• Alford, M. H., 2001: Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr., 31, 23592368, https://doi.org/10.1175/1520-0485(2001)031<2359:ISGTSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2003: Improved global maps and 54-year history of wind work on ocean inertial motions. Geophys. Res. Lett., 30, 1424, https://doi.org/10.1029/2002GL016614.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and M. Whitmont, 2007: Seasonal and spatial variability of near-inertial kinetic energy from historical moored velocity records. J. Phys. Oceanogr., 37, 20222037, https://doi.org/10.1175/JPO3106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., M. F. Cronin, and J. M. Klymak, 2012: Annual cycle and depth penetration of wind-generated near-inertial internal waves at ocean station Papa in the northeast Pacific. J. Phys. Oceanogr., 42, 889909, https://doi.org/10.1175/JPO-D-11-092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. A. MacKinnon, H. L. Simmons, and J. D. Nash, 2016: Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci., 8, 95123, https://doi.org/10.1146/annurev-marine-010814-015746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawford, G. B., and W. G. Large, 1996: A numerical investigation of resonant inertial response of the ocean to wind forcing. J. Phys. Oceanogr., 26, 873891, https://doi.org/10.1175/1520-0485(1996)026<0873:ANIORI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1985: The energy flux from the wind to near inertial motions in the mixed layer. J. Phys. Oceanogr., 15, 10431059, https://doi.org/10.1175/1520-0485(1985)015<1043:TEFFTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., C. C. Eriksen, M. A. Levine, P. Niiler, C. A. Paulson, and P. van Meurs, 1995: Upper ocean inertial currents forced by a strong storm. Part I: Data and comparisons with linear theory. J. Phys. Oceanogr., 25, 29092936, https://doi.org/10.1175/1520-0485(1995)025<2909:UOICFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., G. Liguori, N. Schneider, J. C. Furtado, B. T. Anderson, and M. A. Alexander, 2015: ENSO and meridional modes: A null hypothesis for Pacific climate variability. Geophys. Res. Lett., 42, 94409448, https://doi.org/10.1002/2015GL066281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efron, B., and G. Gong, 1983: A leisurely look at the bootstrap, the jackknife and cross-validation. Amer. Stat., 37, 3648, https://doi.org/10.2307/2685844.

    • Search Google Scholar
    • Export Citation
  • Furuichi, N., T. Hibiya, and Y. Niwa, 2008: Model predicted distribution of wind-induced internal wave energy in the world’s oceans. J. Geophys. Res., 113, C09034, https://doi.org/10.1029/2008JC004768.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., 1984: Vertical eddy diffusivity in the ocean interior. J. Mar. Res., 42, 359393, https://doi.org/10.1357/002224084788502756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1984: On the behavior of internal waves in the wake of a storm. J. Phys. Oceanogr., 14, 11291151, https://doi.org/10.1175/1520-0485(1984)014<1129:OTBOIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasumi, H., and N. Suginohara, 1999: Effects of locally enhanced vertical diffusivity over rough bathymetry on the world ocean circulation. J. Geophys. Res., 104, 23 36723 374, https://doi.org/10.1029/1999JC900191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, R., M. Watanabe, and S. Osafune, 2017: Wind-induced mixing in the North Pacific. J. Phys. Oceanogr., 47, 15871603, https://doi.org/10.1175/JPO-D-16-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochum, M., B. P. Briegleb, G. Danabasoglu, W. G. Large, N. J. Norton, S. R. Jayne, M. H. Alford, and F. O. Bryan, 2013: The impact of oceanic near-inertial waves on climate. J. Climate, 26, 28332844, https://doi.org/10.1175/JCLI-D-12-00181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, https://doi.org/10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., A. J. Williams, and M. G. Briscoe, 1990: Observations of shear and vertical stability from a neutrally-buoyant float. J. Geophys. Res., 95, 18 12718 142, https://doi.org/10.1029/JC095iC10p18127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., R. W. Schmitt, and J. M. Toole, 1995: The energy balance in a warm-core ring’s near-inertial critical layer. J. Phys. Oceanogr., 25, 942957, https://doi.org/10.1175/1520-0485(1995)025<0942:TEBIAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, D., and P. P. Niiler, 1998: The inertial chimney: The near-inertial energy drainage from the ocean surface to the deep layer. J. Geophys. Res., 103, 75797591, https://doi.org/10.1029/97JC03200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menemenlis, D., I. Fukumori, and T. Lee, 2005: Using Green’s functions to calibrate an ocean general circulation model. Mon. Wea. Rev., 133, 12241240, https://doi.org/10.1175/MWR2912.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr., 13, 707730, https://doi.org/10.1016/0011-7471(66)90602-4.

  • Munk, W. H., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagasawa, M., Y. Niwa, and T. Hibiya, 2000: Spatial and temporal distribution of the wind-induced internal wave energy available for deep water mixing in the North Pacific. J. Geophys. Res., 105, 13 93313 943, https://doi.org/10.1029/2000JC900019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., 2004: Sensitivity to wave breaking and the Prandtl number in the ocean mixed layer model and its dependence on latitude. Geophys. Res. Lett., 31, L23305, https://doi.org/10.1029/2004GL021289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osafune, S., T. Doi, S. Masuda, N. Sugiura, and T. Hemmi, 2014: Estimated state of ocean for climate research (ESTOC). JAMSTEC, accessed 14 March 2019, https://doi.org/10.17596/0000106.

    • Crossref
    • Export Citation
  • Osafune, S., S. Masuda, N. Sugiura, and T. Doi, 2015: Evaluation of the applicability of the Estimated State of the Global Ocean for Climate Research (ESTOC) data set. Geophys. Res. Lett., 42, 49034911, https://doi.org/10.1002/2015GL064538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osafune, S., Kouketsu, S., Masuda, S., and N. Sugiura, 2020: Dynamical ocean response controlling the eastward movement of a heat content anomaly caused by the 18.6-year modulation of localized tidally induced mixing. J. Geophys. Res. Oceans, 125, e2019JC015513, https://doi.org/10.1029/2019JC015513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pacanowski, R., and S. Griffies, 2000: MOM 3.0 manual. Geophysical Fluid Dynamics Laboratory, 680 pp.

  • Pollard, R. T., and R. C. Millard, 1970: Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res. Oceanogr. Abstr., 17, 813816, https://doi.org/10.1016/0011-7471(70)90043-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rimac, A., J.-S. von Storch, C. Eden, and H. Haak, 2013: The influence of high-resolution wind stress fields on the power input to near-inertial motions in the ocean. Geophys. Res. Lett., 40, 48824886, https://doi.org/10.1002/grl.50929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rimac, A., J.-S. von Storch, and C. Eden, 2016: The total energy flux leaving the ocean’s mixed layer. J. Phys. Oceanogr., 46, 18851900, https://doi.org/10.1175/JPO-D-15-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., J. H. Dunlap, J. A. Carlson, D. C. Webb, and J. B. Girton, 2005. Autonomous velocity and density profiler: EM-APEX. Proc. Eighth Working Conf. on Current Measurement Technology, Southampton, United Kingdom, IEEE/OES, 152–156.

  • St. Laurent, L. C., H. L. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106, https://doi.org/10.1029/2002GL015633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., and K. Hanawa, 2009: Decadal and interdecadal variations of the Aleutian Low activity and their relation to upper oceanic variations over the North Pacific. J. Meteor. Soc. Japan, 87, 601614, https://doi.org/10.2151/jmsj.87.601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toyoda, T., and et al. , 2015: An improved simulation of the deep Pacific Ocean using optimally-estimated vertical diffusivity based on the Green’s function method. Geophys. Res. Lett., 42, 99169924, https://doi.org/10.1002/2015GL065940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsujino, H., H. Hasumi, and N. Suginohara, 2000: Deep Pacific circulation controlled by vertical diffusivity at the lower thermocline depths. J. Phys. Oceanogr., 30, 28532865, https://doi.org/10.1175/1520-0485(2001)031<2853:DPCCBV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and T. Hibiya, 2002: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29, 1239, https://doi.org/10.1029/2001GL014422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., T. Hibiya, and T. Enomoto, 2005: Comment on “Improved global maps and 54-year history of wind-work on ocean inertial motions” by Matthew H. Alford: Time aliasing in estimating the wind-induced inertial energy. Geophys. Res. Lett., 32, L08603, https://doi.org/10.1029/2005GL022367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., L. D. Talley, and J. A. MacKinnon, 2012: Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett., 39, L18612, https://doi.org/10.1029/2012GL053196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitt, D. B., and L. N. Thomas, 2013: Near-inertial waves in strongly baroclinic currents. J. Phys. Oceanogr., 43, 706725, https://doi.org/10.1175/JPO-D-12-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., R. J. Greatbatch, C. Eden, and T. Hibiya, 2009: On the loss of wind-induced near-inertial energy to turbulent mixing in the upper ocean. J. Phys. Oceanogr., 39, 30403045, https://doi.org/10.1175/2009JPO4259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 48 48 48
Full Text Views 14 14 14
PDF Downloads 14 14 14

Near-Field Wind Mixing and Implications on Parameterization from Float Observations

View More View Less
  • 1 a Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Part of near-inertial wind energy dissipates locally below the surface mixed layer. Here, their role in the climate system is studied by adopting near-inertial, near-field wind-mixing parameterization to a coarse-forward ocean general circulation model. After confirming a problem with the parameterization in the equatorial region, we investigate effects of near-field wind mixing due to storm track activities in the North Pacific. We found that, in the center of the Pacific decadal oscillation (PDO) around 170°W in the midlatitude, near-field wind mixing transfers the PDO signal into deeper layers. Since the results suggest that near-field wind mixing is important in the climate system, we also compared the parameterization with velocity observations by a float in the North Pacific. The float observed abrupt and local propagation of near-inertial internal waves and shear instabilities in the main thermocline along the Kuroshio Extension for 460 km. Vertical diffusivities inferred from the parameterization do not reproduce the enhanced diffusivities in the deeper layer inferred from the float. Wave-ray tracing indicates that wave trapping near the Kuroshio front is responsible for the elevated diffusivities. Therefore, enhanced mixing due to trapping should be included in the parameterization.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ryuichiro Inoue, rinoue@jamstec.go.jp

Abstract

Part of near-inertial wind energy dissipates locally below the surface mixed layer. Here, their role in the climate system is studied by adopting near-inertial, near-field wind-mixing parameterization to a coarse-forward ocean general circulation model. After confirming a problem with the parameterization in the equatorial region, we investigate effects of near-field wind mixing due to storm track activities in the North Pacific. We found that, in the center of the Pacific decadal oscillation (PDO) around 170°W in the midlatitude, near-field wind mixing transfers the PDO signal into deeper layers. Since the results suggest that near-field wind mixing is important in the climate system, we also compared the parameterization with velocity observations by a float in the North Pacific. The float observed abrupt and local propagation of near-inertial internal waves and shear instabilities in the main thermocline along the Kuroshio Extension for 460 km. Vertical diffusivities inferred from the parameterization do not reproduce the enhanced diffusivities in the deeper layer inferred from the float. Wave-ray tracing indicates that wave trapping near the Kuroshio front is responsible for the elevated diffusivities. Therefore, enhanced mixing due to trapping should be included in the parameterization.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ryuichiro Inoue, rinoue@jamstec.go.jp
Save