• Archer, M. R., L. K. Shay, B. Jaimes, and J. Martinez-Pedraja, 2015: Observing frontal instabilities of the Florida Current using high frequency radar. Coastal Ocean Observing Systems, Y. Liu et al., Eds., Elsevier, https://doi.org/10.1016/B978-0-12-802022-7.00011-0.

    • Crossref
    • Export Citation
  • Barth, A., A. Alvera-Azcárate, and R. H. Weisberg, 2008: A nested model study of the Loop Current generated variability and its impact on the West Florida Shelf. J. Geophys. Res., 113, C05009, https://doi.org/10.1029/2007JC004492.

    • Search Google Scholar
    • Export Citation
  • Beal, L. M., J. M. Hummon, E. Williams, O. B. Brown, W. Baringer, and E. J. Kearns, 2008: Five years of Florida current structure and transport from the Royal Caribbean Cruise Ship Explorer of the Seas. J. Geophys. Res., 113, C06001, https://doi.org/10.1029/2007JC004154.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, https://doi.org/10.1175/JPO3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, I. H., and P. P. Niiler, 1977: Energetics of the Florida Current. J. Mar. Res., 35, 163191.

  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part II: Frontal processes. J. Phys. Oceanogr., 38, 4464, https://doi.org/10.1175/2007JPO3672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casey, K. S., T. B. Brandon, P. Cornillon, and R. Evans, 2010: The past, present, and future of the AVHRR pathfinder SST program. Oceanography from Space, V. Barale, J. Gower, and L. Alberotanza, Eds., Springer, 273–287, https://doi.org/10.1007/978-90-481-8681-5_16.

    • Crossref
    • Export Citation
  • Chassignet, E. P., and et al. , 2009: U.S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography, 22, 6475, https://doi.org/10.5670/oceanog.2009.39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chester, D. B., P. Malanotte-Rizzoli, and H. DeFerrari, 1991: Acoustic tomography in the Straits of Florida. J. Geophys. Res., 96, 70237048, https://doi.org/10.1029/91JC00007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Criales, M. M., L. M. Chérubin, and J. A. Browder, 2015: Modeling larval transport and settlement of the pink shrimp in south Florida: dynamics of behavior and tides. Mar. Coast. Fish., 7, 148176, https://doi.org/10.1080/19425120.2014.1001541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, K. A., J. J. Leichter, J. L. Hench, and S. G. Monismith, 2008: Effects of western boundary current dynamics on the internal wave field of Southeast Florida shelf. J. Geophys. Res., 113, C09010, https://doi.org/10.1029/2007JC004699.

    • Search Google Scholar
    • Export Citation
  • Debreu, L., P. Marchesiello, P. Penven, and G. Cambon, 2012: Two-way nesting in split-explicit ocean models: Algorithms, implementation and validation. Ocean Modell., 49–50, 121, https://doi.org/10.1016/j.ocemod.2012.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohue, K. A., D. Watts, P. Hamilton, R. Leben, M. Kennelly, and A. Lugo-Fernaìndez, 2016: Gulf of Mexico Loop Current path variability. Dyn. Atmos. Oceans, 76, 174194, https://doi.org/10.1016/j.dynatmoce.2015.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, D. G., Frajka-Williams, E., Naveira Garabato, A. C., Polzin, K. L., and Forryan, A., 2020: Mesoscale eddy dissipation by a “zoo” of submesoscale processes at a western boundary. J. Geophys. Res. Oceans, 125, e2020JC016246, https://doi.org/10.1029/2020JC016246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiechter, J., and C. N. Mooers, 2003: Simulation of frontal eddies on the east Florida Shelf. Geophys. Res. Lett., 30, 2151, https://doi.org/10.1029/2003GL018307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fratantoni, P. S., T. N. Lee, G. Podesta, and F. Muller-Karger, 1998: The influence of Loop Current perturbations on the formation and evolution of Tortugas eddies in the southern Straits of Florida. J. Geophys. Res., 103, 24 75924 779, https://doi.org/10.1029/98JC02147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2014: Sub-mesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr., 44, 26172643, https://doi.org/10.1175/JPO-D-14-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2015a: Gulf Stream dynamics along the southeastern U.S. seaboard. J. Phys. Oceanogr., 45, 690715, https://doi.org/10.1175/JPO-D-14-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2015b: Topographic vorticity generation, submesoscale instability and vortex street formation in the Gulf Stream. Geophys. Res. Lett., 42, 40544062, https://doi.org/10.1002/2015GL063731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., J. M. Molemaker, and J. C. McWilliams, 2016: Submesoscale dynamics of a Gulf Stream frontal eddy in the South Atlantic Bight. J. Phys. Oceanogr., 46, 305325, https://doi.org/10.1175/JPO-D-14-0258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, R., and R. H. Weisberg, 2002: West Florida shelf circulation and temperature budget for the 1999 spring transition. Cont. Shelf Res., 22, 719748, https://doi.org/10.1016/S0278-4343(01)00085-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, W. E., and F. Schott, 1987: Meandering and transport variations of the Florida Current. J. Phys. Oceanogr., 17, 11281147, https://doi.org/10.1175/1520-0485(1987)017<1128:MATVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kourafalou, V. H., and H. Kang, 2012: Florida current meandering and evolution of cyclonic eddies along the Florida keys reef tract: Are they inter-connected? J. Geophys. Res., 117, C05028, https://doi.org/10.1029/2011JC007383.

    • Search Google Scholar
    • Export Citation
  • Krug, M., S. Swart, and J. Gula, 2017: Submesoscale cyclones in the Agulhas Current. Geophys. Res. Lett., 44, 346354, https://doi.org/10.1002/2016GL071006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., P. Klein, and B. L. Hua, 2006: Oceanic restratification forced by surface frontogenesis. J. Phys. Oceanogr., 36, 15771590, https://doi.org/10.1175/JPO2923.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T. N., 1975: Florida Current spin-off eddies. Deep-Sea Res., 22, 753765.

  • Lee, T. N., 1986: Coastal circulation in the Key Largo Coral Reef Marine Sanctuary. Physics of Shallow Estuaries and Bays, J. van de Kreeke, Ed., Lecture Notes in Coastal and Estuarine Studies, Vol. 16, Springer, 178–198, https://doi.org/10.1029/LN016p0178.

    • Crossref
    • Export Citation
  • Lee, T. N., and D. Mayer, 1977: Low-frequency current variability and spin-off eddies on the shelf off southeast Florida. J. Mar. Res., 35, 193200.

    • Search Google Scholar
    • Export Citation
  • Lee, T. N., and E. Williams, 1988: Wind-forced transport fluctuations of the Florida Current. J. Phys. Oceanogr., 18, 937946, https://doi.org/10.1175/1520-0485(1988)018<0937:WFTFOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T. N., J. A. Yoder, and L. P. Atkinson, 1991: Gulf Stream frontal eddy influence on productivity of the southeast U.S. continental shelf. J. Geophys. Res., 96, 22 19122 205, https://doi.org/10.1029/91JC02450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T. N., C. Rooth, E. Williams, M. McGowan, A. F. Szmant, and M. E. Clarke, 1992: Influence of Florida Current, gyres and wind-driven circulation on transport of larvae and recruitment in the Florida keys coral reefs. Cont. Shelf Res., 12, 9711002, https://doi.org/10.1016/0278-4343(92)90055-O.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T. N., K. Leaman, E. Williams, T. Berger, and L. Atkinson, 1995: Florida Current meanders and gyre formation in the southern Straits of Florida. J. Geophys. Res., 100, 86078620, https://doi.org/10.1029/94JC02795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magaldi, M. G., T. M. Özgökmen, A. Griffa, E. P. Chassignet, M. Iskandarani, and H. Peters, 2008: Turbulent flow regimes behind a coastal cape in a stratified and rotating environment. Ocean Modell., 25, 6582, https://doi.org/10.1016/j.ocemod.2008.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manucharyan, G. E., and M. L. Timmermans, 2013: Generation and separation of mesoscale eddies from surface ocean fronts. J. Phys. Oceanogr., 43, 25452562, https://doi.org/10.1175/JPO-D-13-094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., X. Capet, C. Menkes, and S. C. Kennan, 2011: Submesoscale dynamics in tropical instability waves. Ocean Modell., 39, 3146, https://doi.org/10.1016/j.ocemod.2011.04.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

  • Mesinger, F., and et al. , 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M., J. McWilliams, and W. Dewar, 2015: Submesoscale instability and generation of mesoscale anticyclones near a separation of the California Undercurrent. J. Phys. Oceanogr., 45, 613629, https://doi.org/10.1175/JPO-D-13-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, R., and K. Leaman, 1987: Surface currents in the Straits of Florida. Mar. Wea. Log, 31, 1113.

  • Morvan, M., and X. Carton, 2020: Sub-mesoscale frontal instabilities in the Omani Coastal Current. Mathematics, 8, 562, https://doi.org/10.3390/math8040562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, H., L. K. Shay, A. J. Mariano, and T. M. Cook, 2002: Current variability on a narrow shelf with large ambient vorticity. J. Geophys. Res., 107, 3087, https://doi.org/10.1029/2001JC000813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayleigh, L., 1880: On the stability, or instability of certain fluid motions. Proc. Roy. Soc. London, 9, 5770.

  • Richardson, D. E., J. K. Llopiz, K. D. Leaman, P. S. Vertes, F. E. Muller-Karger, and R. K. Cowen, 2009: Sailfish (Istiophorus platypterus) spawning and larval environment in a Florida Current frontal eddy. Prog. Oceanogr., 82, 252264, https://doi.org/10.1016/j.pocean.2009.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., T. N. Lee, E. J. Williams, H. C. Graber, and C. G. H. Rooth, 1998: Effects of low frequency current variability on near-inertial submesoscale vortices. J. Geophys. Res., 103, 18 69118 714, https://doi.org/10.1029/98JC01007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., and et al. , 2000: VHF radar detects oceanic submesoscale vortex along Florida coast. Eos, Trans. Amer. Geophys. Union, 81, 209213, https://doi.org/10.1029/00EO00143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., T. M. Cook, H. Peters, A. J. Mariano, R. H. Weisberg, P. E. An, A. Soloviev, and M. Luther, 2002: Very high-frequency radar mapping of surface currents. IEEE J. Oceanic Eng., 27, 155169, https://doi.org/10.1109/JOE.2002.1002470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., J. Martinez-Pedraja, T. M. Cook, B. K. Haus, and R. Weisberg, 2007: High-frequency radar mapping of surface currents using WERA. J. Atmos. Oceanic Technol., 24, 484503, https://doi.org/10.1175/JTECH1985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sponaugle, S., T. Lee, V. Kourafalou, and D. Pinkard, 2005: Florida Current frontal eddies and the settlement of coral reef fishes. Limnol. Oceanogr., 50, 10331048, https://doi.org/10.4319/lo.2005.50.4.1033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tedesco, P., J. Gula, C. Ménesguen, P. Penven, and M. J. Krug, 2019: Generation of submesoscale frontal eddies in the Agulhas Current. J. Geophys. Res. Oceans, 124, 76067625, https://doi.org/10.1029/2019JC015229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yankovsky, E., and S. Legg, 2019: Symmetric and baroclinic instability in dense shelf overflows. J. Phys. Oceanogr., 49, 3961, https://doi.org/10.1175/JPO-D-18-0072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zamudio, L., and P. J. Hogan, 2008: Nesting the Gulf of Mexico in Atlantic HYCOM: Oceanographic processes generated by Hurricane Ivan. Ocean Modell., 21, 106125, https://doi.org/10.1016/j.ocemod.2007.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zantopp, R. J., K. D. Leaman, and T. N. Lee, 1987: Florida Current meanders: A close look in June–July 1984. J. Phys. Oceanogr., 17, 584595, https://doi.org/10.1175/1520-0485(1987)017<0584:FCMACL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., C. Hu, Y. Liu, R. H. Weisberg, and V. H. Kourafalou, 2019: Submesoscale and mesoscale eddies in the Florida Straits: Observations from satellite ocean color measurements. Geophys. Res. Lett., 46, 13 26213 270, https://doi.org/10.1029/2019GL083999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, Y., and A. Bracco, 2013: Submesoscale impacts on horizontal and vertical transport in the Gulf of Mexico. J. Geophys. Res. Oceans, 118, 56515668, https://doi.org/10.1002/jgrc.20402.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 155 155 57
Full Text Views 49 49 13
PDF Downloads 60 60 14

Submesoscale Instability in the Straits of Florida

View More View Less
  • 1 a Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida
  • | 2 b Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
  • | 3 c Département de Physique, IUEM/LOPS UFR Sciences, Plouzané, France
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The Florida Current (FC) flows in the Straits of Florida (SoF) and connects the Loop Current in the Gulf of Mexico to the Gulf Stream (GS) in the western Atlantic Ocean. Its journey through the SoF is at time characterized by the formation and presence of mesoscale but mostly submesoscale frontal eddies on the cyclonic side of the current. The formation of those frontal eddies was investigated in a very high-resolution two-way nested simulation using the Regional Oceanic Modeling System (ROMS). Frontal eddies were either locally formed or originated from outside the SoF. The northern front of the incoming eddies was susceptible to superinertial shear instability over the shelf slope when the eddies were pushed up against the slope by the FC. Otherwise, incoming eddies could be advected, relatively unaffected by the current, when in the southern part of the straits. In the absence of incoming eddies, submesoscale eddies were locally formed by the roll-up of superinertial barotropically unstable vorticity filaments when the FC was pushed up against the shelf slope. The vorticity filaments were intensified by the friction-induced bottom-layer vorticity flux as previously demonstrated by Gula et al. in the GS. When the FC retreated farther south, negative-vorticity west Florida shelf waters overflowed into the SOF and led to the formation of submesoscale eddies by baroclinic instability. The instability regimes, that is, the submesoscale frontal eddies formation, appear to be controlled by the lateral “sloshing” of the FC in the SoF.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Laurent Chérubin, lcherubin@fau.edu

Abstract

The Florida Current (FC) flows in the Straits of Florida (SoF) and connects the Loop Current in the Gulf of Mexico to the Gulf Stream (GS) in the western Atlantic Ocean. Its journey through the SoF is at time characterized by the formation and presence of mesoscale but mostly submesoscale frontal eddies on the cyclonic side of the current. The formation of those frontal eddies was investigated in a very high-resolution two-way nested simulation using the Regional Oceanic Modeling System (ROMS). Frontal eddies were either locally formed or originated from outside the SoF. The northern front of the incoming eddies was susceptible to superinertial shear instability over the shelf slope when the eddies were pushed up against the slope by the FC. Otherwise, incoming eddies could be advected, relatively unaffected by the current, when in the southern part of the straits. In the absence of incoming eddies, submesoscale eddies were locally formed by the roll-up of superinertial barotropically unstable vorticity filaments when the FC was pushed up against the shelf slope. The vorticity filaments were intensified by the friction-induced bottom-layer vorticity flux as previously demonstrated by Gula et al. in the GS. When the FC retreated farther south, negative-vorticity west Florida shelf waters overflowed into the SOF and led to the formation of submesoscale eddies by baroclinic instability. The instability regimes, that is, the submesoscale frontal eddies formation, appear to be controlled by the lateral “sloshing” of the FC in the SoF.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Laurent Chérubin, lcherubin@fau.edu

Supplementary Materials

    • Supplemental Materials (ZIP 7.55 MB)
Save