• Almansi, M., T. W. N. Haine, R. Gelderloos, and R. S. Pickart, 2020: Evolution of Denmark Strait overflow cyclones and their relationship to overflow surges. Geophys. Res. Lett., 47, e2019GL086759, https://doi.org/10.1029/2019GL086759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armi, L., D. Hebert, N. Oakey, J. F. Price, P. L. Richardson, H. T. Rossby, and B. Ruddick, 1989: Two years in the life of a Mediterranean salt lens. J. Phys. Oceanogr., 19, 354370, https://doi.org/10.1175/1520-0485(1989)019<0354:TYITLO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacon, S., and P. M. Saunders, 2010: The deep western boundary current at Cape Farewell: Results from a moored current meter array. J. Phys. Oceanogr., 40, 815829, https://doi.org/10.1175/2009JPO4091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosse, A., and et al. , 2016: Scales and dynamics of submesoscale coherent vortices formed by deep convection in the northwestern Mediterranean Sea. J. Geophys. Res. Oceans, 121, 77167742, https://doi.org/10.1002/2016JC012144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruce, J. G., 1995: Eddies southwest of the Denmark Strait. Deep-Sea Res. I, 42, 1329, https://doi.org/10.1016/0967-0637(94)00040-Y.

  • Danabasoglu, G., and et al. , 2014: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states. Ocean Modell., 73, 76107, https://doi.org/10.1016/j.ocemod.2013.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Jong, M. F., A. S. Bower, and H. H. Furey, 2014: Two years of observations of warm-core anticyclones in the Labrador Sea and their seasonal cycle in heat and salt stratification. J. Phys. Oceanogr., 44, 427444, https://doi.org/10.1175/JPO-D-13-070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., and J. Brown, 1994: The production of North Atlantic Deep Water: Sources, rates, and pathways. J. Geophys. Res., 99, 12 31912 341, https://doi.org/10.1029/94JC00530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., and et al. , 2008: The overflow flux west of Iceland: Variability origin and forcing. Arctic–Subarctic Ocean Fluxes, R. R. Dickson, J. Meincke, and P. Rhines, Eds., Springer, 443–474.

    • Crossref
    • Export Citation
  • Eden, C., and C. Böning, 2002: Sources of eddy kinetic energy in the Labrador Sea. J. Phys. Oceanogr., 32, 33463363, https://doi.org/10.1175/1520-0485(2002)032<3346:SOEKEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, J., and et al. , 2015: Intra-seasonal variability of the DWBC in the western subpolar North Atlantic. Prog. Oceanogr., 132, 233249, https://doi.org/10.1016/j.pocean.2014.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., 1981: Particle motions in large-amplitude wave fields. Geophys. Astrophys. Fluid Dyn., 18, 3974, https://doi.org/10.1080/03091928108208773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Girton, J. B., and T. B. Sanford, 2003: Descent and modification of the overflow plume in the Denmark Strait. J. Phys. Oceanogr., 33, 13511364, https://doi.org/10.1175/1520-0485(2003)033<1351:DAMOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graves, L. P., J. C. McWilliams, and M. T. Montgomery, 2006: Vortex evolution due to straining: A mechanism for dominance of strong, interior anticyclones. Geophys. Astrophys. Fluid Dyn., 100, 151183, https://doi.org/10.1080/03091920600792041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, A. E., 1996: Spin-down and the dynamics of dense pool gyres in shallow seas. J. Mar. Res., 54, 471486, https://doi.org/10.1357/0022240963213538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holliday, N. P., A. Meyer, S. Bacon, S. G. Alderson, and B. de Cuevas, 2007: Retroflection of part of the east Greenland current at Cape Farewell. Geophys. Res. Lett., 34, L07609, https://doi.org/10.1029/2006GL029085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopkins, J. E., N. P. Holliday, D. Rayner, L. Houpert, I. Le Bras, F. Straneo, C. Wilson, and S. Bacon, 2019: Transport variability of the Irminger Sea Deep Western Boundary Current from a mooring array. J. Geophys. Res. Oceans, 124, 32463278, https://doi.org/10.1029/2018JC014730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, L., and R. W. Garwood Jr., 1996: Three-dimensional simulations of overflows on continental slopes. J. Phys. Oceanogr., 26, 12141233, https://doi.org/10.1175/1520-0485(1996)026<1214:TDSOOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., J. Hauser, and R. H. Käse, 2001: Cyclogenesis in the Denmark Strait overflow plume. J. Phys. Oceanogr., 31, 32143229, https://doi.org/10.1175/1520-0485(2001)031<3214:CITDSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Käse, R. H., J. B. Girton, and T. B. Sanford, 2003: Structure and variability of the Denmark Strait Overflow: Model and observations. J. Geophys. Res. Oceans, 108, 3181, https://doi.org/10.1029/2002JC001548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., 1994: Inviscid current separation from rounded capes. J. Phys. Oceanogr., 24, 18051811, https://doi.org/10.1175/1520-0485(1994)024<1805:ICSFRC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koszalka, I. M., T. W. N. Haine, and M. G. Magaldi, 2017: Mesoscale mixing of the Denmark Strait Overflow in the Irminger basin. Ocean Modell., 112, 9098, https://doi.org/10.1016/j.ocemod.2017.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krauss, W., 1996: A note on overflow eddies. Deep-Sea Res. I, 43, 16611667, https://doi.org/10.1016/S0967-0637(96)00073-8.

  • Krauss, W., and R. H. Käse, 1998: Eddy formation in the Denmark Strait overflow. J. Geophys. Res. Oceans, 103, 15 52515 538, https://doi.org/10.1029/98JC00785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauderdale, J. M., S. Bacon, A. C. Naveira Garabato, and N. P. Holliday, 2008: Intensified turbulent mixing in the boundary current system of southern Greenland. Geophys. Res. Lett., 35, L04611, https://doi.org/10.1029/2007GL032785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Bras, I. A.-A., F. Straneo, J. Holte, M. F. de Jong, and N. P. Holliday, 2020: Rapid export of waters formed by convection near the Irminger Sea’s western boundary. Geophys. Res. Lett., 47, e2019GL085989, https://doi.org/10.1029/2019GL085989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, J. M., and P. B. Rhines, 2002: Coherent eddies in the Labrador Sea observed from a mooring. J. Phys. Oceanogr., 32, 585598, https://doi.org/10.1175/1520-0485(2002)032<0585:CEITLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, P., R. S. Pickart, D. J. Torres, and A. Pacini, 2018: Evolution of the freshwater coastal current at the southern tip of Greenland. J. Phys. Oceanogr., 48, 21272140, https://doi.org/10.1175/JPO-D-18-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, P., R. S. Pickart, K. Jochumsen, G. W. K. Moore, H. Valdimarsson, T. Fristedt, and L. J. Pratt, 2020: Kinematic structure and dynamics of the Denmark Strait overflow from ship-based observations. J. Phys. Oceanogr., 50, 32353251, https://doi.org/10.1175/JPO-D-20-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., and et al. , 2017: Overturning in the Subpolar North Atlantic Program: A new international ocean observing system. Bull. Amer. Meteor. Soc., 98, 737752, https://doi.org/10.1175/BAMS-D-16-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., and et al. , 2019: A sea change in our view of overturning in the subpolar North Atlantic. Science, 363, 516521, https://doi.org/10.1126/science.aau6592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magaldi, M. G., T. W. Haine, and R. S. Pickart, 2011: On the nature and variability of the East Greenland Spill Jet: A case study in summer 2003. J. Phys. Oceanogr., 41, 23072327, https://doi.org/10.1175/JPO-D-10-05004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDowell, S. E., and H. T. Rossby, 1978: Mediterranean water: An intense mesoscale eddy off the Bahamas. Science, 202, 10851087, https://doi.org/10.1126/science.202.4372.1085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc., A472, 20160117, https://doi.org/10.1098/rspa.2016.0117.

  • McWilliams, J. C., and G. R. Flierl, 1979: On the evolution of isolated, nonlinear vortices. J. Phys. Oceanogr., 9, 11551182, https://doi.org/10.1175/1520-0485(1979)009<1155:OTEOIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and P. R. Gent, 1986: The evolution of sub-mesoscale, coherent vortices on the β-plane. Geophys. Astrophys. Fluid Dyn., 35, 235255, https://doi.org/10.1080/03091928608245894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nof, D., 1983: The translation of isolated cold eddies on a sloping bottom. Deep-Sea Res., 30A, 171182, https://doi.org/10.1016/0198-0149(83)90067-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, R. P., K. Jochumsen, and M. Moritz, 2018: Entrainment and energy transfer variability along the descending path of the Denmark Strait overflow plume. J. Geophys. Res. Oceans, 123, 27952807, https://doi.org/10.1002/2018JC013821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OOI, 2020: NSF Ocean Observatories Initiative Data Portal. Accessed 27 January, http://ooinet.oceanobservatories.org.

  • Pacini, A., and et al. , 2020: Mean conditions and seasonality of the West Greenland boundary current system near Cape Farewell. J. Phys. Oceanogr., 50, 28492871, https://doi.org/10.1175/JPO-D-20-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pacini, A., R. S. Pickart, I. A. Le Bras, F. Straneo, and N. P. Holliday, 2021: Cyclonic eddies in the West Greenland boundary current system. J. Phys. Oceanogr., 51, 20872102, https://doi.org/10.1175/JPO-D-20-0255.1.

    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28, 929937, https://doi.org/10.1016/S0098-3004(02)00013-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., M. A. Spall, M. H. Ribergaard, G. K. Moore, and R. F. Milliff, 2003: Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature, 424, 152156, https://doi.org/10.1038/nature01729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prater, M. D., and T. B. Sanford, 1994: A meddy off Cape St. Vincent. Part I: Description. J. Phys. Oceanogr., 24, 15721586, https://doi.org/10.1175/1520-0485(1994)024<1572:AMOCSV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., and M. O. N. Baringer, 1994: Outflows and deep water production by marginal seas. Prog. Oceanogr., 33, 161200, https://doi.org/10.1016/0079-6611(94)90027-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pujol, M. I., Y. Faugère, G. Taburet, S. Dupuy, C. Pelloquin, M. Ablain, and N. Picot, 2016: DUACS DT2014: The new multi-mission altimeter data set reprocessed over 20 years. Ocean Sci., 12, 10671090, https://doi.org/10.5194/os-12-1067-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramsey, A., H. Furey, and A. Bower, 2020: Overturning of the Subpolar North Atlantic Program (OSNAP): RAFOS Float Data Report, June 2014–January 2019. Woods Hole Oceanographic Institution Tech. Rep. WHOI-2020-06, 508 pp., https://doi.org/10.1575/1912/26515.

    • Crossref
    • Export Citation
  • Regier, L., and H. Stommel, 1979: Float trajectories in simple kinematic flows. Proc. Natl. Acad. Sci. USA, 76, 47604764, https://doi.org/10.1073/pnas.76.10.4760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, P. L., J. F. Price, D. Walsh, L. Armi, and M. Schröder, 1989: Tracking three meddies with SOFAR floats. J. Phys. Oceanogr., 19, 371383, https://doi.org/10.1175/1520-0485(1989)019<0371:TTMWSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, C. K., 1982: Overflow ’73—Denmark Strait: Vol 3—Temperature, salinity and sigma-t sections. Canadian Tech. Rep. of Hydrography and Ocean Sciences 16, Bedford Institute of Oceanography, Dartmouth, NS, Canada, 57 pp., https://publications.gc.ca/collections/collection_2015/mpo-dfo/Fs97-18-16-eng.pdf.

  • Rossby, T., D. Dorson, and J. Fontaine, 1986: The RAFOS system. J. Atmos. Oceanic Technol., 3, 672679, https://doi.org/10.1175/1520-0426(1986)003<0672:TRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudels, B., E. Fahrbach, J. Meincke, G. Budéus, and P. Eriksson, 2002: The East Greenland Current and its contribution to the Denmark Strait overflow. ICES J. Mar. Sci., 59, 11331154, https://doi.org/10.1006/jmsc.2002.1284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaffer, J., T. Kanzow, K. Jochumsen, K. Lackschewitz, S. Tippenhauer, V. M. Zhurbas, and D. Quadfasel, 2016: Enhanced turbulence driven by mesoscale motions and flow-topography interaction in the Denmark Strait Overflow plume. J. Geophys. Res. Oceans, 121, 76507672, https://doi.org/10.1002/2016JC011653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. C., 1976: Baroclinic instability in the Denmark Strait overflow. J. Phys. Oceanogr., 6, 355371, https://doi.org/10.1175/1520-0485(1976)006<0355:BIITDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., and J. F. Price, 1998: Mesoscale variability in Denmark Strait: The PV outflow hypothesis. J. Phys. Oceanogr., 28, 15981623, https://doi.org/10.1175/1520-0485(1998)028<1598:MVIDST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spall, M. A., R. S. Pickart, P. Lin, W. J. von Appen, D. Mastropole, H. Valdimarsson, T. W. Haine, and M. Almansi, 2019: Frontogenesis and variability in Denmark Strait and its influence on overflow water. J. Phys. Oceanogr., 49, 18891904, https://doi.org/10.1175/JPO-D-19-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinberg, J. M., N. A. Pelland, and C. C. Eriksen, 2019: Observed evolution of a California Undercurrent eddy. J. Phys. Oceanogr., 49, 649674, https://doi.org/10.1175/JPO-D-18-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swaters, G. E., 1991: On the baroclinic instability of cold-core coupled density fronts on a sloping continental shelf. J. Fluid Mech., 224, 361382, https://doi.org/10.1017/S0022112091001799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swaters, G. E., and G. R. Flierl, 1991: Dynamics of ventilated coherent cold eddies on a sloping bottom. J. Fluid Mech., 223, 565587, https://doi.org/10.1017/S0022112091001556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voet, G., and D. Quadfasel, 2010: Entrainment in the Denmark Strait overflow plume by meso-scale eddies. Ocean Sci., 6, 301310, https://doi.org/10.5194/os-6-301-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Appen, W. J., R. S. Pickart, K. H. Brink, and T. W. Haine, 2014: Water column structure and statistics of Denmark Strait Overflow Water cyclones. Deep-Sea Res. I, 84, 110126, https://doi.org/10.1016/j.dsr.2013.10.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Appen, W. J., D. Mastropole, R. S. Pickart, H. Valdimarsson, S. Jónsson, and J. B. Girton, 2017: On the nature of the mesoscale variability in Denmark Strait. J. Phys. Oceanogr., 47, 567582, https://doi.org/10.1175/JPO-D-16-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., S. A. Legg, and R. W. Hallberg, 2015: Representations of the Nordic Seas overflows and their large scale climate impact in coupled models. Ocean Modell., 86, 7692, https://doi.org/10.1016/j.ocemod.2014.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitehead, J. A., M. E. Stern, G. R. Flierl, and B. A. Klinger, 1990: Experimental observations of baroclinic eddies on a sloping bottom. J. Geophys. Res. Oceans, 95, 95859610, https://doi.org/10.1029/JC095iC06p09585.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 21 21 21
Full Text Views 7 7 7
PDF Downloads 10 10 10

Observed Deep Cyclonic Eddies around Southern Greenland

View More View Less
  • 1 a State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
  • | 2 b Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 3 c National Oceanography Centre, Southampton, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Recent mooring measurements from the Overturning in the Subpolar North Atlantic Program have revealed abundant cyclonic eddies at both sides of Cape Farewell, the southern tip of Greenland. In this study, we present further observational evidence, from both Eulerian and Lagrangian perspectives, of deep cyclonic eddies with intense rotation (ζ/f > 1) around southern Greenland and into the Labrador Sea. Most of the observed cyclones exhibit strongest rotation below the surface at 700–1000 dbar, where maximum azimuthal velocities are ~30 cm s−1 at radii of ~10 km, with rotational periods of 2–3 days. The cyclonic rotation can extend to the deep overflow water layer (below 1800 dbar), albeit with weaker azimuthal velocities (~10 cm s−1) and longer rotational periods of about one week. Within the middepth rotation cores, the cyclones are in near solid-body rotation and have the potential to trap and transport water. The first high-resolution hydrographic transect across such a cyclone indicates that it is characterized by a local (both vertically and horizontally) potential vorticity maximum in its middepth core and cold, fresh anomalies in the deep overflow water layer, suggesting its source as the Denmark Strait outflow. Additionally, the propagation and evolution of the cyclonic eddies are illustrated with deep Lagrangian floats, including their detachments from the boundary currents to the basin interior. Taken together, the combined Eulerian and Lagrangian observations have provided new insights on the boundary current variability and boundary–interior exchange over a geographically large scale near southern Greenland, calling for further investigations on the (sub)mesoscale dynamics in the region.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sijia Zou, sijiazou2018@gmail.com

Abstract

Recent mooring measurements from the Overturning in the Subpolar North Atlantic Program have revealed abundant cyclonic eddies at both sides of Cape Farewell, the southern tip of Greenland. In this study, we present further observational evidence, from both Eulerian and Lagrangian perspectives, of deep cyclonic eddies with intense rotation (ζ/f > 1) around southern Greenland and into the Labrador Sea. Most of the observed cyclones exhibit strongest rotation below the surface at 700–1000 dbar, where maximum azimuthal velocities are ~30 cm s−1 at radii of ~10 km, with rotational periods of 2–3 days. The cyclonic rotation can extend to the deep overflow water layer (below 1800 dbar), albeit with weaker azimuthal velocities (~10 cm s−1) and longer rotational periods of about one week. Within the middepth rotation cores, the cyclones are in near solid-body rotation and have the potential to trap and transport water. The first high-resolution hydrographic transect across such a cyclone indicates that it is characterized by a local (both vertically and horizontally) potential vorticity maximum in its middepth core and cold, fresh anomalies in the deep overflow water layer, suggesting its source as the Denmark Strait outflow. Additionally, the propagation and evolution of the cyclonic eddies are illustrated with deep Lagrangian floats, including their detachments from the boundary currents to the basin interior. Taken together, the combined Eulerian and Lagrangian observations have provided new insights on the boundary current variability and boundary–interior exchange over a geographically large scale near southern Greenland, calling for further investigations on the (sub)mesoscale dynamics in the region.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sijia Zou, sijiazou2018@gmail.com
Save