• Amrhein, D., G. Gebbie, O. Marchal, and C. Wunsch, 2015: Inferring surface water equilibrium calcite δ18O during the last deglacial period from benthic foraminiferal records: Implications for ocean circulation. Paleoceanography, 30, 14701489, https://doi.org/10.1002/2014PA002743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amrhein, D., C. Wunsch, O. Marchal, and G. Forget, 2018: A global glacial ocean state estimate constrained by upper-ocean temperature proxies. J. Climate, 31, 80598079, https://doi.org/10.1175/JCLI-D-17-0769.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, B. D. O., and G. B. Moore, 1979: Optimal Filtering. Dover Publishing, 368 pp.

  • Audi, G., O. Bersillon, J. Blachot, and A. Wapstra, 2003: The NUBASE evaluation of nuclear and decay properties. Nucl. Phys., 729, 3128, https://doi.org/10.1016/j.nuclphysa.2003.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, S., and P. Diz, 2014: Timing of the descent into the last Ice Age determined by the bipolar seesaw. Paleoceanography, 29, 489507, https://doi.org/10.1002/2014PA002623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, S., G. Knorr, M. Vautravers, P. Diz, and L. Skinner, 2010: Extreme deepening of the Atlantic overturning circulation during deglaciation. Nat. Geosci., 3, 567571, https://doi.org/10.1038/ngeo921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1979: A revised estimate for the radiocarbon age of North Atlantic Deep Water. J. Geophys. Res., 84, 32183226, https://doi.org/10.1029/JC084iC06p03218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryson, A. R., and Y.-C. Ho, 1975: Applied Optimal Control. Taylor & Francis, 481 pp.

  • Buckley, M., and J. Marshall, 2015: Observations, inferences, and mechanisms of the Atlantic meridional overturning circulation: A review. Rev. Geophys., 54, 5–63, https://doi.org/10.1002/2015RG000493.

    • Search Google Scholar
    • Export Citation
  • Burke, A., O. Marchal, L. I. Bradtmiller, J. F. McManus, and R. François, 2011: Application of an inverse method to interpret 231 Pa/ 230 Th observations from marine sediments. Paleoceanography, 26, PA1212, https://doi.org/10.1029/2010PA002022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, M., and L. Keigwin, 2015: Radiocarbon profiles from the NW Pacific from the LGM and deglaciation: Evaluating ventilation metrics and the effect of uncertain reservoir ages. Paleoceanography, 30, 174195, https://doi.org/10.1002/2014PA002649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dail, H., and C. Wunsch, 2014: Dynamical reconstruction of upper-ocean conditions in the Last Glacial Maximum. J. Climate, 27, 807823, https://doi.org/10.1175/JCLI-D-13-00211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Walczak, M., A. Mix, J. Stoner, J. Southon, M. Cheseby, and C. Xuan, 2014: Late Glacial and Holocene radiocarbon constraints on North Pacific Intermediate Water ventilation and deglacial atmospheric CO2. Earth Planet. Sci. Lett., 397, 5766, https://doi.org/10.1016/j.epsl.2014.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., and et al. , 2020: A parameterization of local and remote tidal mixing. J. Adv. Model. Earth Syst., 12, e2020MS002065, https://doi.org/10.1029/2020MS002065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeVries, T., and F. Primeau, 2011: Dynamically and observationally constrained estimates of water-mass distributions and ages in the global ocean. J. Phys. Oceanogr., 41, 23812401, https://doi.org/10.1175/JPO-D-10-05011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1999: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Texts in Applied Mathematics, Vol. 32, Springer, 465 pp.

    • Crossref
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343367, https://doi.org/10.1007/s10236-003-0036-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukumori, I., 1995: Assimilation of TOPEX sea level measurements with a reduced-gravity, shallow water model of the tropical Pacific Ocean. J. Geophys. Res., 100, 2502725039, https://doi.org/10.1029/95JC02083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukumori, I., 2002: A partitioned Kalman filter and smoother. Mon. Wea. Rev., 130, 13701383, https://doi.org/10.1175/1520-0493(2002)130<1370:APKFAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukumori, I., and P. Malanotte-Rizzoli, 1995: An approximate Kalman filter for ocean data assimilation: An example with an idealized Gulf Stream model. J. Geophys. Res., 100, 67776793, https://doi.org/10.1029/94JC03084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galbraith, E., and C. de Lavergne, 2019: Response of a comprehensive climate model to a broad range of external forcing: Relevance for deep ocean ventilation and the development of late Cenozoic ice ages. Climate Dyn., 52, 653679, https://doi.org/10.1007/s00382-018-4157-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Pintado, J., and A. Paul, 2018: Evaluation of iterative Kalman smoother schemes for multi-decadal past climate analysis with comprehensive Earth system models. Geosci. Model Dev., 11, 50515084, https://doi.org/10.5194/gmd-11-5051-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspar, P., and C. Wunsch, 1989: Estimates from altimetric data of barotropic waves in the northwestern Atlantic Ocean. J. Phys. Oceanogr., 19, 18211844, https://doi.org/10.1175/1520-0485(1989)019<1821:EFADOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebbie, G., 2012: Tracer transport timescales and the observed Atlantic-Pacific lag in the timing of the Last Termination. Paleoceanography, 27, PA3225, https://doi.org/10.1029/2011PA002273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebbie, G., and P. Huybers, 2006: Meridional circulation during the Last Glacial Maximum explored through a combination of South Atlantic δ18O observations and a geostrophic inverse model. Geochem. Geophys. Geosyst., 7, Q11N07, https://doi.org/10.1029/2006GC001383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebbie, G., and P. Huybers, 2012: The mean age of ocean waters inferred from radiocarbon observations: Sensitivity to surface sources and accounting for mixing histories. J. Phys. Oceanogr., 42, 291305, https://doi.org/10.1175/JPO-D-11-043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelb, A., J. F. Kasper, R. A. Nash, C. F. Price, and A. A. Sutherland, 1974: Applied Optimal Estimation. MIT Press, 374 pp.

  • Gottschalk, J., L. Skinner, J. Lippold, H. Vogel, M. Frank, S. Jaccard, and C. Waelbroeck, 2016: Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2. Nat. Commun., 7, 11539, https://doi.org/10.1038/ncomms11539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M., E. D’Asaro, J. Riley, and E. Kunze, 2018: Mixing efficiency in the ocean. Annu. Rev. Mar. Sci., 10, 443473, https://doi.org/10.1146/annurev-marine-121916-063643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., J. LaCasce, T. McDougall, and M. Rogé, 2020: Full-depth global estimates of ocean mesoscale eddy mixing from observations and theory. Geophys. Res. Lett., 47, e2020GL089425, https://doi.org/10.1029/2020GL089425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holzer, M., F. Primeau, W. Smethie, and S. Khatiwala, 2010: Where and how long ago was water in the western North Atlantic ventilated? Maximum entropy inversions of bottle data from WOCE line A20. J. Geophys. Res., 115, C07005, https://doi.org/10.1029/2009JC005750.

    • Search Google Scholar
    • Export Citation
  • Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. Academic Press, 376 pp.

  • Keigwin, L. D., 2004: Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilation in the western North Atlantic. Paleoceanography, 19, PA4012, https://doi.org/10.1029/2004PA001029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Key, R., and et al. , 2004: A global ocean carbon climatology: Results from Global Data Aanalysis Project (GLODAP). Global Biogeochem. Cycles, 18, GB4031, https://doi.org/10.1029/2004GB002247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., F. Primeau, and M. Holzer, 2012: Ventilation of the deep ocean constrained with tracer observations and implications for radiocarbon estimates of ideal mean age. Earth Planet. Sci. Lett., 325–326, 116125, https://doi.org/10.1016/j.epsl.2012.01.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., A. Schmittner, and J. Muglia, 2019: Air-sea disequilibrium enhances ocean carbon storage during glacial periods. Sci. Adv., 5, eaaw4981, https://doi.org/10.1126/sciadv.aaw4981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurahashi-Nakamura, T., A. Paul, and M. Losch, 2017: Dynamical reconstruction of the global ocean state during the Last Glacial Maximum. Paleoceanography, 32, 326350, https://doi.org/10.1002/2016PA003001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeGrand, P., and C. Wunsch, 1995: Constraints from paleotracer data on the North Atlantic circulation during the last glacial maximum. Paleoceanography, 10, 10111045, https://doi.org/10.1029/95PA01455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchal, O., and W. B. Curry, 2008: On the abyssal circulation in the glacial Atlantic. J. Phys. Oceanogr., 38, 20142037, https://doi.org/10.1175/2008JPO3895.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchal, O., and N. Zhao, 2021: On the estimation of deep Atlantic ventilation from fossil radiocarbon records. Part I: Modern reference estimates. J. Phys. Oceanogr., 51, 18431873, https://doi.org/10.1175/JPO-D-20-0153.1.

    • Search Google Scholar
    • Export Citation
  • Marchal, O., C. Waelbroeck, and A. Colin de Verdière, 2016: On the movements of the North Atlantic subpolar front in the preinstrumental past. J. Climate, 29, 15451571, https://doi.org/10.1175/JCLI-D-15-0509.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MARGO Project Members, 2009: Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nature, 2, 127132, https://doi.org/10.1038/ngeo411.

    • Search Google Scholar
    • Export Citation
  • Masarik, J., and J. Beer, 2009: An updated simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. J. Geophys. Res., 114, D11103, https://doi.org/10.1029/2008JD010557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsumoto, K., 2007: Radiocarbon-based circulation age of the world oceans. J. Geophys. Res., 112, C09004, https://doi.org/10.1029/2007JC004095.

    • Search Google Scholar
    • Export Citation
  • Miller, M., M. Simons, J. Adkins, and S. Minson, 2015: The information content of pore fluid δ18O and [Cl]. J. Phys. Oceanogr., 45, 20702094, https://doi.org/10.1175/JPO-D-14-0203.1..

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NGDC, 2006: 2-minute Gridded Global Relief Data (ETOPO 2) v2. NOAA/National Geophysical Data Center, accessed 25 July 2006, https://doi.org/10.7289/V5J1012Q.

    • Crossref
    • Export Citation
  • Rauch, H. E., F. Tung, and C. T. Striebel, 1965: Maximum likelihood estimates of linear dynamic systems. AIAA J., 3, 14451450, https://doi.org/10.2514/3.3166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reimer, P., and et al. , 2020: IntCal20 Northern Hemisphere radiocarbon age calibration curves (0–55 cal kBP). Radiocarbon, 62, 725757, https://doi.org/10.1017/RDC.2020.41.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, L., J. Adkins, L. Keigwin, J. Southon, D. Fernandez, S.-L. Wang, and D. Scheirer, 2005: Radiocarbon variability in the western North Atlantic during the last deglaciation. Science, 310, 14691473, https://doi.org/10.1126/science.1114832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rubin, S., and R. Key, 2002: Separating natural and bomb-produced radiocarbon in the ocean: The potential alkalinity method. Global Biogeochem. Cycles, 16, 1105, https://doi.org/10.1029/2001GB001432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, L., S. Fallon, C. Waelbroeck, E. Michel, and S. Barker, 2010: Ventilation of the deep Southern Ocean and deglacial CO2. Science, 328, 11471151, https://doi.org/10.1126/science.1183627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, L., C. Waelbroeck, A. Scrivner, and S. Fallon, 2014: Radiocarbon evidence for alternating northern and southern sources of ventilation of the deep Atlantic carbon pool during the last deglaciation. Proc. Natl. Acad. Sci. USA, 111, 54805484, https://doi.org/10.1073/pnas.1400668111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, L., and et al. , 2017: Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2. Nat. Commun., 8, 16010, https://doi.org/10.1038/ncomms16010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., 1983: A simple positive-definite advection scheme with small implicit diffusion. Mon. Wea. Rev., 111, 479486, https://doi.org/10.1175/1520-0493(1983)111<0479:ASPDAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuiver, M., P. D. Quay, and H. G. Ostlund, 1983: Abyssal water carbon-14 distribution and the age of the world oceans. Science, 219, 849851, https://doi.org/10.1126/science.219.4586.849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A., and et al. , 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winguth, A. M. E., D. Archer, E. Maier-Reimer, and U. Mikolajewicz, 2000: Paleonutrient data analysis of the glacial Atlantic using an adjoint ocean general circulation model. Inverse Methods in Global Biogeochemical Cycles, Geophys. Monogr., Vol. 114, Amer. Geophys. Union, 171–183.

    • Crossref
    • Export Citation
  • Wunsch, C., 2006: Discrete Inverse and State Estimation Problems. Cambridge University Press, 371 pp.

    • Crossref
    • Export Citation
  • Wunsch, C., 2016a: Last Glacial Maximum and deglacial abyssal seawater oxygen isotopic ratios. Climate Past, 12, 12811296, https://doi.org/10.5194/cp-12-1281-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2016b: Pore fluids and the LGM ocean salinity - Reconsidered. Quat. Sci. Rev., 135, 154170, https://doi.org/10.1016/j.quascirev.2016.01.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, N., O. Marchal, L. Keigwin, D. Amrhein, and G. Gebbie, 2018: A synthesis of deglacial deep-sea radiocarbon records and their (in)consistency with modern ocean circulation. Paleoceanogr. Paleoclimatol., 33, 128151, https://doi.org/10.1002/2017PA003174.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 80 80 36
Full Text Views 27 27 17
PDF Downloads 32 32 19

On the Estimation of Deep Atlantic Ventilation from Fossil Radiocarbon Records. Part II: (In)consistency with Modern Estimates

View More View Less
  • 1 a Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 2 b State Key Laboratory of Estuarine and Coastal Research and School of Marine Sciences, East China Normal University, Shanghai, China
  • | 3 c Max Planck Institute for Chemistry, Mainz, Germany
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Measurements of radiocarbon concentration (Δ14C) in fossil biogenic carbonates have been interpreted as reflecting a reduced ventilation of the deep Atlantic during the last ice age. Here we evaluate the (in)consistency of an updated compilation of fossil Δ14C data for the last deglaciation with the abyssal circulation in the modern Atlantic. A Δ14C transport equation, in which the mean velocity field is a modern field estimate and turbulent flux divergence is treated as a random fluctuation, is fitted to deglacial Δ14C records by using recursive weighted least squares. This approach allows us to interpret the records in terms of deviations from the modern flow with due regard for uncertainties in the fossil data, the Δ14C transport equation, and its boundary conditions. We find that the majority of fit residuals could be explained by uncertainties in fossil Δ14C data, for two distinct estimates of the modern flow and of the error variance in the boundary conditions. Thus, most, not all, deglacial data appear consistent with present-day ventilation rates. From 20% to 32% of the residuals exceed in magnitude the published errors in the fossil data by a factor of 2. Residuals below 4000 m in the western North Atlantic are all negative, suggesting that deglacial Δ14C values from this region are too low to be explained by modern ventilation. While deep water ventilation appeared different from today at some locations, a larger database and a better understanding of error (co)variances are needed to make reliable paleoceanographic inferences from fossil Δ14C records.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Olivier Marchal, omarchal@whoi.edu; Ning Zhao, nzhao@sklec.ecnu.edu.cn

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-20-0153.1.

Abstract

Measurements of radiocarbon concentration (Δ14C) in fossil biogenic carbonates have been interpreted as reflecting a reduced ventilation of the deep Atlantic during the last ice age. Here we evaluate the (in)consistency of an updated compilation of fossil Δ14C data for the last deglaciation with the abyssal circulation in the modern Atlantic. A Δ14C transport equation, in which the mean velocity field is a modern field estimate and turbulent flux divergence is treated as a random fluctuation, is fitted to deglacial Δ14C records by using recursive weighted least squares. This approach allows us to interpret the records in terms of deviations from the modern flow with due regard for uncertainties in the fossil data, the Δ14C transport equation, and its boundary conditions. We find that the majority of fit residuals could be explained by uncertainties in fossil Δ14C data, for two distinct estimates of the modern flow and of the error variance in the boundary conditions. Thus, most, not all, deglacial data appear consistent with present-day ventilation rates. From 20% to 32% of the residuals exceed in magnitude the published errors in the fossil data by a factor of 2. Residuals below 4000 m in the western North Atlantic are all negative, suggesting that deglacial Δ14C values from this region are too low to be explained by modern ventilation. While deep water ventilation appeared different from today at some locations, a larger database and a better understanding of error (co)variances are needed to make reliable paleoceanographic inferences from fossil Δ14C records.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Olivier Marchal, omarchal@whoi.edu; Ning Zhao, nzhao@sklec.ecnu.edu.cn

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-20-0153.1.

Save