Propagation Features of Diurnal Internal Tides West of the Luzon Strait Revealed by a Large PIES Array

Min Wang aSchool of Oceanography, Shanghai Jiao Tong University, Shanghai, China
bState Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China

Search for other papers by Min Wang in
Current site
Google Scholar
PubMed
Close
,
Xiao-Hua Zhu aSchool of Oceanography, Shanghai Jiao Tong University, Shanghai, China
bState Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
cSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Search for other papers by Xiao-Hua Zhu in
Current site
Google Scholar
PubMed
Close
,
Hua Zheng aSchool of Oceanography, Shanghai Jiao Tong University, Shanghai, China
bState Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China

Search for other papers by Hua Zheng in
Current site
Google Scholar
PubMed
Close
,
Juntian Chen bState Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China

Search for other papers by Juntian Chen in
Current site
Google Scholar
PubMed
Close
,
Ruixiang Zhao bState Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China

Search for other papers by Ruixiang Zhao in
Current site
Google Scholar
PubMed
Close
,
Zhao-Jun Liu bState Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China

Search for other papers by Zhao-Jun Liu in
Current site
Google Scholar
PubMed
Close
,
Qiang Ren dKey Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
eCenter for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China

Search for other papers by Qiang Ren in
Current site
Google Scholar
PubMed
Close
,
Yansong Liu dKey Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
eCenter for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
fMarine Dynamic Process and Climate Function Laboratory, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China

Search for other papers by Yansong Liu in
Current site
Google Scholar
PubMed
Close
,
Feng Nan dKey Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
eCenter for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
fMarine Dynamic Process and Climate Function Laboratory, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China

Search for other papers by Feng Nan in
Current site
Google Scholar
PubMed
Close
,
Fei Yu dKey Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
eCenter for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
fMarine Dynamic Process and Climate Function Laboratory, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
gUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Fei Yu in
Current site
Google Scholar
PubMed
Close
,
Jianfeng Wang dKey Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
eCenter for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
fMarine Dynamic Process and Climate Function Laboratory, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China

Search for other papers by Jianfeng Wang in
Current site
Google Scholar
PubMed
Close
, and
Qiang Li hGraduate School at Shenzhen, Tsinghua University, Shenzhen, China

Search for other papers by Qiang Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Energetic internal tides (ITs) are generated from the Luzon Strait (LS) and propagate westward into the South China Sea (SCS). Owing to the lack of large-scale synchronous measurements, the propagation features and seasonal variations of diurnal ITs remain unclear. From 2018 to 2019, mode-1 diurnal ITs west of the LS were continuously observed using a large-scale moored array of 27 pressure inverted echo sounders (PIESs) and a thermistor chain. Measurements confirmed that diurnal ITs radiate from the LS with a north–south asymmetrical pattern, with the most energetic channel located in the middle and south of the LS. The total energy radiated into the SCS across 120°E is 2.67 GW for the K1 and 1.54 GW for O1 ITs, approximately two times larger than those inferred from satellite observations. K1 dominates among the diurnal ITs, with its maximum isopycnal displacement (amplitude) and energy input to the SCS being the strongest in summer (i.e., 16.3 m and 2.81 GW, respectively). The propagation speed of K1 is higher in summer and autumn along the main channel (i.e., 4.33 and 4.36 m s−1, respectively). Seasonal stratification and circulation play important roles in the seasonal variation of amplitude and propagation speed of the K1 ITs. The seasonal variability of diurnal-band ITs, which includes all diurnal constituents, is location-dependent and primarily results from the superposition of the K1 and P1 ITs. In particular, vertical displacement is strong in summer and winter along the main channel of the K1 and P1 ITs. The seasonal amplitude of K1 can modulate this seasonal feature.

© 2023 American Meteorological Society. This is an Author Accepted Manuscript distributed under the terms of the default AMS reuse license. For information regarding reuse and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiao-Hua Zhu, xhzhu@sio.org.cn

Abstract

Energetic internal tides (ITs) are generated from the Luzon Strait (LS) and propagate westward into the South China Sea (SCS). Owing to the lack of large-scale synchronous measurements, the propagation features and seasonal variations of diurnal ITs remain unclear. From 2018 to 2019, mode-1 diurnal ITs west of the LS were continuously observed using a large-scale moored array of 27 pressure inverted echo sounders (PIESs) and a thermistor chain. Measurements confirmed that diurnal ITs radiate from the LS with a north–south asymmetrical pattern, with the most energetic channel located in the middle and south of the LS. The total energy radiated into the SCS across 120°E is 2.67 GW for the K1 and 1.54 GW for O1 ITs, approximately two times larger than those inferred from satellite observations. K1 dominates among the diurnal ITs, with its maximum isopycnal displacement (amplitude) and energy input to the SCS being the strongest in summer (i.e., 16.3 m and 2.81 GW, respectively). The propagation speed of K1 is higher in summer and autumn along the main channel (i.e., 4.33 and 4.36 m s−1, respectively). Seasonal stratification and circulation play important roles in the seasonal variation of amplitude and propagation speed of the K1 ITs. The seasonal variability of diurnal-band ITs, which includes all diurnal constituents, is location-dependent and primarily results from the superposition of the K1 and P1 ITs. In particular, vertical displacement is strong in summer and winter along the main channel of the K1 and P1 ITs. The seasonal amplitude of K1 can modulate this seasonal feature.

© 2023 American Meteorological Society. This is an Author Accepted Manuscript distributed under the terms of the default AMS reuse license. For information regarding reuse and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiao-Hua Zhu, xhzhu@sio.org.cn
Save