Models of the sea-surface height expression of the internal-wave continuum

R. M. Samelson aCollege of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA

Search for other papers by R. M. Samelson in
Current site
Google Scholar
PubMed
Close
and
J. T. Farrar bDepartment of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA, USA

Search for other papers by J. T. Farrar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Several models are presented for the sea-surface height (SSH) signature of the interior-ocean internal-wave continuum. Most are based on the Garrett-Munk internal-wave model. One is derived from the frequency spectrum of dynamic height from mooring observations. The different models are all plausibly consistent with accepted dynamical and semi-empirical spectral descriptions of the climatological interval-wave field in the interior ocean, but they result in different proportionalities between interior and SSH spectral energy levels. The differences arise in part from differences in the treatment of near-surface stratification, and a major source of uncertainty for all the models comes from inadequately constrained assumptions about the energy in the low-vertical-mode internal-wave field. Most of these models suggest that the SSH signature of the internal-wave continuum will be visible in SSH measurements from the Surface Water and Ocean Topography (SWOT) wide-swath satellite altimeter. Temporal variability of internal-wave energy levels and the internal-wave directional spectrum are less well characterized but will also be consequential for the observability of internal-wave signals in SWOT data.

© 2024 American Meteorological Society. This is an Author Accepted Manuscript distributed under the terms of the default AMS reuse license. For information regarding reuse and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. T. Farrar, jfarrar@whoi.edu

Abstract

Several models are presented for the sea-surface height (SSH) signature of the interior-ocean internal-wave continuum. Most are based on the Garrett-Munk internal-wave model. One is derived from the frequency spectrum of dynamic height from mooring observations. The different models are all plausibly consistent with accepted dynamical and semi-empirical spectral descriptions of the climatological interval-wave field in the interior ocean, but they result in different proportionalities between interior and SSH spectral energy levels. The differences arise in part from differences in the treatment of near-surface stratification, and a major source of uncertainty for all the models comes from inadequately constrained assumptions about the energy in the low-vertical-mode internal-wave field. Most of these models suggest that the SSH signature of the internal-wave continuum will be visible in SSH measurements from the Surface Water and Ocean Topography (SWOT) wide-swath satellite altimeter. Temporal variability of internal-wave energy levels and the internal-wave directional spectrum are less well characterized but will also be consequential for the observability of internal-wave signals in SWOT data.

© 2024 American Meteorological Society. This is an Author Accepted Manuscript distributed under the terms of the default AMS reuse license. For information regarding reuse and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. T. Farrar, jfarrar@whoi.edu
Save