An overlooked component of the meridional overturning circulation

Michael A. Spall Woods Hole Oceanographic Institution, Woods Hole, MA 02543

Search for other papers by Michael A. Spall in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Upwelling along the western boundary of the major ocean basin subtropical gyres has been diagnosed in a wide range of ocean models and state estimates. This vertical transport is O(5×106 m3 s−1), which is of the same order of magnitude as the downward Ekman pumping across the subtropical gyres and zonally-integrated meridional overturning circulation. Two approaches are used here to understand the reason for this upwelling and how it depends on oceanic parameters. First, a kinematic model that imposes a density gradient along the western boundary demonstrates that there must be upwelling with a maximum vertical transport at mid-depths in order to maintain geostrophic balance in the western boundary current. The second approach considers the vorticity budget near the western boundary in an idealized primitive equation model of the wind- and buoyancy-forced subtropical and subpolar gyres. It is shown that a pressure gradient along the western boundary results in bottom pressure torque that injects vorticity into the fluid. This is balanced on the boundary by lateral viscous fluxes that redistribute this vorticity across the boundary current. The viscous fluxes in the interior are balanced primarily by vertical stretching of planetary vorticity, giving rise to upwelling within the boundary current. This process is found to be nearly adiabatic. Nonlinear terms and advection of planetary vorticity are also important locally but are not the ultimate drivers of the upwelling. Additional numerical model calculations demonstrate that the upwelling is a non-local consequence of buoyancy loss at high latitudes and thus represents an integral component of the meridional overturning circulation in depth-space but not in density-space.

© 2024 American Meteorological Society. This is an Author Accepted Manuscript distributed under the terms of the default AMS reuse license. For information regarding reuse and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael A. Spall, mspall@whoi.edu

Abstract

Upwelling along the western boundary of the major ocean basin subtropical gyres has been diagnosed in a wide range of ocean models and state estimates. This vertical transport is O(5×106 m3 s−1), which is of the same order of magnitude as the downward Ekman pumping across the subtropical gyres and zonally-integrated meridional overturning circulation. Two approaches are used here to understand the reason for this upwelling and how it depends on oceanic parameters. First, a kinematic model that imposes a density gradient along the western boundary demonstrates that there must be upwelling with a maximum vertical transport at mid-depths in order to maintain geostrophic balance in the western boundary current. The second approach considers the vorticity budget near the western boundary in an idealized primitive equation model of the wind- and buoyancy-forced subtropical and subpolar gyres. It is shown that a pressure gradient along the western boundary results in bottom pressure torque that injects vorticity into the fluid. This is balanced on the boundary by lateral viscous fluxes that redistribute this vorticity across the boundary current. The viscous fluxes in the interior are balanced primarily by vertical stretching of planetary vorticity, giving rise to upwelling within the boundary current. This process is found to be nearly adiabatic. Nonlinear terms and advection of planetary vorticity are also important locally but are not the ultimate drivers of the upwelling. Additional numerical model calculations demonstrate that the upwelling is a non-local consequence of buoyancy loss at high latitudes and thus represents an integral component of the meridional overturning circulation in depth-space but not in density-space.

© 2024 American Meteorological Society. This is an Author Accepted Manuscript distributed under the terms of the default AMS reuse license. For information regarding reuse and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael A. Spall, mspall@whoi.edu
Save