Verification of Seasonal Climate Forecast toward Hydroclimatic Information Needs of Rice Farmers in Northern Ghana

Emmanuel Nyadzi Water Systems and Global Change Group, Wageningen University, Wageningen, Netherlands, and Management Development Foundation West Africa, Accra, Ghana

Search for other papers by Emmanuel Nyadzi in
Current site
Google Scholar
PubMed
Close
,
E. Saskia Werners Water Systems and Global Change Group, Wageningen University, Wageningen, Netherlands

Search for other papers by E. Saskia Werners in
Current site
Google Scholar
PubMed
Close
,
Robbert Biesbroek Public Administration and Policy Group, Wageningen University, Wageningen, Netherlands

Search for other papers by Robbert Biesbroek in
Current site
Google Scholar
PubMed
Close
,
Phi Hoang Long Water Systems and Global Change Group, Wageningen University, Wageningen, Netherlands

Search for other papers by Phi Hoang Long in
Current site
Google Scholar
PubMed
Close
,
Wietse Franssen Water Systems and Global Change Group, Wageningen University, Wageningen, Netherlands

Search for other papers by Wietse Franssen in
Current site
Google Scholar
PubMed
Close
, and
Fulco Ludwig Water Systems and Global Change Group, Wageningen University, Wageningen, Netherlands

Search for other papers by Fulco Ludwig in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Farmers in sub-Saharan Africa face many difficulties when making farming decisions due to unexpected changes in weather and climate. Access to hydroclimatic information can potentially assist farmers to adapt. This study explores the extent to which seasonal climate forecasts can meet hydroclimatic information needs of rice farmers in northern Ghana. First, 62 rice farmers across 12 communities were interviewed about their information needs. Results showed that importance of hydroclimatic information depends on the frequency of use and farming type (rain-fed, irrigated, or both). Generally, farmers perceived rainfall distribution, dam water level, and temperature as very important information, followed by total rainfall amount and onset ranked as important. These findings informed our skills assessment of rainfall (Prcp), minimum temperature (Tmin), and maximum temperature (Tmax) from the European Centre for Medium-Range Weather Forecasts (ECMWF-S4) and at lead times of 0 to 2 months. Forecast bias, correlation, and skills for all variables vary with season and location but are generally unsystematic and relatively constant with forecast lead time. Making it possible to meet farmers’ needs at their most preferred lead time of 1 month before the farming season. ECMWF-S4 exhibited skill in Prcp, Tmin, and Tmax in northern Ghana except for a few grid cells in MAM for Prcp and SON for Tmin and Tmax. Tmin and Tmax forecasts were more skillful than Prcp. We conclude that the participatory coproduction approach used in this study provides better insight for understanding demand-driven climate information services and that the ECMWF-S4 seasonal forecast system has the potential to provide actionable hydroclimatic information that may support farmers’ decisions.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/WCAS-D-17-0137.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Emmanuel Nyadzi, emmanuel.nyadzi@wur.nl, enyadzi@yahoo.com

Abstract

Farmers in sub-Saharan Africa face many difficulties when making farming decisions due to unexpected changes in weather and climate. Access to hydroclimatic information can potentially assist farmers to adapt. This study explores the extent to which seasonal climate forecasts can meet hydroclimatic information needs of rice farmers in northern Ghana. First, 62 rice farmers across 12 communities were interviewed about their information needs. Results showed that importance of hydroclimatic information depends on the frequency of use and farming type (rain-fed, irrigated, or both). Generally, farmers perceived rainfall distribution, dam water level, and temperature as very important information, followed by total rainfall amount and onset ranked as important. These findings informed our skills assessment of rainfall (Prcp), minimum temperature (Tmin), and maximum temperature (Tmax) from the European Centre for Medium-Range Weather Forecasts (ECMWF-S4) and at lead times of 0 to 2 months. Forecast bias, correlation, and skills for all variables vary with season and location but are generally unsystematic and relatively constant with forecast lead time. Making it possible to meet farmers’ needs at their most preferred lead time of 1 month before the farming season. ECMWF-S4 exhibited skill in Prcp, Tmin, and Tmax in northern Ghana except for a few grid cells in MAM for Prcp and SON for Tmin and Tmax. Tmin and Tmax forecasts were more skillful than Prcp. We conclude that the participatory coproduction approach used in this study provides better insight for understanding demand-driven climate information services and that the ECMWF-S4 seasonal forecast system has the potential to provide actionable hydroclimatic information that may support farmers’ decisions.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/WCAS-D-17-0137.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Emmanuel Nyadzi, emmanuel.nyadzi@wur.nl, enyadzi@yahoo.com

Supplementary Materials

    • Supplemental Materials (PDF 1.78 MB)
Save
  • Afiesimama, A. E., J. S. Pal, B. J. Abiodun, W. J. Gutowski, and A. Adedoyin, 2006: Simulation of West African monsoon using the RegCM3. Part I: Model validation and interannual variability. Theor. Appl. Climatol., 86, 2337, https://doi.org/10.1007/s00704-005-0202-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alves, O., G. Wang, A. Zhong, N. Smith, G. Warren, A. Marshall, F. Tzeitkin, and A. Schiller, 2002: POAMA: Bureau of Meteorology operational coupled model seasonal forecast system. ECMWF, 32 pp., https://www.ecmwf.int/sites/default/files/elibrary/2003/7694-poama-bureau-meteorology-coupled-model-seasonal-forecast-system.pdf.

  • Ambani, M., and Fiona, P., 2014. Facing uncertainty: The value of climate information for adaptation, risk reduction and resilience in Africa. 16 pp., https://careclimatechange.org/wp-content/uploads/2014/08/C_Comms_Brief.pdf.

  • Amekudzi, L., E. Yamba, K. Preko, E. Asare, J. Aryee, M. Baidu, and S. Codjoe, 2015: Variabilities in rainfall onset, cessation and length of rainy season for the various agroecological zones of Ghana. Climate, 3, 416434, https://doi.org/10.3390/cli3020416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amikuzuno, J., and S. A. Donkoh, 2012: Climate variability and yields of major staple food crops in northern Ghana. Afr. Crop Sci. J., 20, 349360.

    • Search Google Scholar
    • Export Citation
  • Asante, F. A., and F. Amuakwa-Mensah, 2015: Climate change and variability in Ghana: Stocktaking. Climate, 3, 7899, https://doi.org/10.3390/cli3010078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asare-Kyei, D. K., J. Kloos, and F. G. Renaud, 2015: Multi-scale participatory indicator development approaches for climate change risk assessment in West Africa. Int. J. Disaster Risk Reduct., 11, 1334, https://doi.org/10.1016/j.ijdrr.2014.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baltzer, K., and H. Hansen, 2011: Evaluation study: Agricultural input subsidies in sub-Saharan Africa. International Development Cooperation (DANIDA), 33 pp., https://www.oecd.org/derec/49231998.pdf.

  • Barnston, A. G., S. Li, S. J. Mason, D. G. DeWitt, L. Goddard, and X. Gong, 2010: Verification of the first 11 years of IRI’s seasonal climate forecasts. J. Appl. Meteor. Climatol., 49, 493520, https://doi.org/10.1175/2009JAMC2325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. K. Tippett, H. M. van den Dool, and D. A. Unger, 2015: Toward an improved multimodel ENSO prediction. J. Appl. Meteor. Climatol., 54, 15791595, https://doi.org/10.1175/JAMC-D-14-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bedia, J., and M. Iturbide, 2017: TransformeR: An R package for climate data manipulation and transformation. R Package version 0.0.14. https://github.com/SantanderMetGroup/transformeR/wiki.

  • Bedia, J., M. Iturbide, S. Herrera, R. Manzanas, and J. Gutiérrez, 2017: DownscaleR: An R package for bias correction and statistical downscaling. R package version 2.0.0, https://github.com/SantanderMetGroup/downscaleR.

  • Benin, S., A. Nin Pratt, S. Wood, and Z. Guo, 2011: Trends and spatial patterns in agricultural productivity in Africa, 1961–2010. ReSAKSS Annual Trends and Outlook Report 2011. International Food Policy Research Institute (IFPRI), 92 pp., http://www.ifpri.org/publication/trends-and-spatial-patterns-agricultural-productivity-africa-1961-2010.

  • Bowen, G. A., 2009: Document analysis as a qualitative research method. Qual. Res. J., 9, 2740, https://doi.org/10.3316/QRJ0902027.

  • Cofiño, A. S., and Coauthors, 2018: The ECOMS User Data Gateway: Towards seasonal forecast data provision and research reproducibility in the era of climate services. Climate Serv., 9, 3343, https://doi.org/10.1016/j.cliser.2017.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crane, T. A., C. Roncoli, J. Paz, N. Breuer, K. Broad, K. T. Ingram, and G. Hoogenboom, 2010: Forecast skill and farmers’ skills: Seasonal climate forecasts and agricultural risk management in the southeastern United States. Wea. Climate Soc., 2, 4459, https://doi.org/10.1175/2009WCAS1006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., J. García-Serrano, F. Lienert, A. P. Pintó Biescas, and L. R. Rodrigues, 2013: Seasonal climate predictability and forecasting: Status and prospects. Wiley Interdiscip. Rev.: Climate Change, 4, 245268, https://doi.org/10.1002/wcc.217.

    • Search Google Scholar
    • Export Citation
  • Donkoh, S. A., J. A. Awuni, and R. Namara, 2010: Improving the efficiency of inland valley rice production in northern Ghana. J. Ghana Sci. Assoc., 12 (2), https://doi.org/10.4314/jgsa.v12i2.62818.

    • Search Google Scholar
    • Export Citation
  • ESOKO, 2016: Access and use of seasonal forecast Information gives hope to farmers in northern Ghana. https://www.esoko.com/access-and-use-of-seasonal-forecast-information-gives-hope-to-farmers-in-northern-ghana/.

  • Feleke, H. G., 2015: Assessing weather forecasting needs of smallholder farmers for climate change adaptation in the Central Rift Valley of Ethiopia. J. Earth Sci. Climatic Change, 6, 312, https://doi.org/10.4172/2157-7617.1000312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferro, C. A. T., D. S. Richardson, and A. P. Weigel, 2008: On the effect of ensemble size on the discrete and continuous ranked probability scores. Meteor. Appl., 15, 1924, https://doi.org/10.1002/met.45.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frías, M. D., J. Fernandez, M. Iturbide, and J. Bedia, 2017: visualizeR: Visualizing and communicating uncertainty in seasonal climate prediction. R package version 0.2.1, https://github.com/SantanderMetGroup/visualizeR/wiki.

  • Gallus, W. A., Jr., and M. Segal, 2004: Does increased predicted warm-season rainfall indicate enhanced likelihood of rain occurrence? Wea. Forecasting, 19, 11271135, https://doi.org/10.1175/820.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gbetibouo, G., C. Hill, J. Abazaami, A. Mills, D. Snyman, and O. Huyser, 2017: Impact assessment on climate information services for community-based adaptation to climate change. Ghana Climate Services Report Ghana Country Report. CARE International ALP Programme, 50 pp., http://careclimatechange.org/wp-content/uploads/2017/07/Ghana-Climate-Services-Country-Report.pdf.

  • GFCS, 2016: Development and Delivery of Climate Services Research Dialogue 8, 19 May 2016. Global Framework for Climate Services, 12 pp, https://unfccc.int/files/science/workstreams/research/application/pdf/part2.1_wmo_dilley.pdf.

  • GIDA, 2011: Bontanga irrigation scheme. Ghana Irrigation Development Authority, Ministry of Food and Agriculture, accessed 11 September 2017, https://mofa.gov.gh/site/?page_id=3022.

  • GIDA, 2016: Irrigation schemes by regions in Ghana. Ghana Irrigation Development Authority, http://www.gida.gov.gh/schemes.php.

  • Graef, F., and J. Haigis, 2001: Spatial and temporal rainfall variability in the Sahel and its effects on farmers’ management strategies. J. Arid Environ., 48, 221231, https://doi.org/10.1006/jare.2000.0747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GSS, 2013: 2010 population and housing census. National Analytical report. Ghana Statistical Service, http://www.statsghana.gov.gh/docfiles/publications/2010_PHC_National_Analytical_Report.pdf.

  • Gwenzi, J., E. Mashonjowa, P. L. Mafongoya, D. T. Rwasoka, and K. Stigter, 2016: The use of indigenous knowledge systems for short and long range rainfall prediction and farmers’ perceptions of science-based seasonal forecasts in Zimbabwe. Int. J. Climate Change Strategic Manage., 8, 440462, https://doi.org/10.1108/IJCCSM-03-2015-0032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J. W., 2002: Applying seasonal climate prediction to agricultural production. Agric. Syst., 74, 305307, https://doi.org/10.1016/S0308-521X(02)00042-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J. W., A. Mishra, K. P. C. Rao, M. Indeje, and R. K. Ngugi, 2009: Potential value of GCM-based seasonal rainfall forecasts for maize management in semi-arid Kenya. Agric. Syst., 101, 8090, https://doi.org/10.1016/j.agsy.2009.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IFAD, 2012: Ghana: Country programme evaluation. IFAD Publ. 84, International Fund for Agricultural Development, accessed 4 October 2017, http://www.ifad.org/evaluation/public_html/eksyst/doc/profile/pa/ghana2012.htm.

  • Iizumi, T., and N. Ramankutty, 2015: How do weather and climate influence cropping area and intensity? Global Food Secur., 4, 4650, https://doi.org/10.1016/j.gfs.2014.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Indeje, M., F. H. M. Semazzi, and L. J. Ogallo, 2000: ENSO signals in East African rainfall seasons. Int. J. Climatol., 20, 1946, https://doi.org/10.1002/(SICI)1097-0088(200001)20:1<19::AID-JOC449>3.0.CO;2-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., and D. B. Stephenson, 2003: Forecast Verification. A Practitioner’s Guide in Atmospheric Science. John Wiley & Sons, 240 pp.

  • Kanamitsu, M., and Coauthors; 2002: NCEP dynamical seasonal forecast system 2000. Bull. Amer. Meteor. Soc., 83, 10191037, https://doi.org/10.1175/1520-0477(2002)083<1019:NDSFS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., and F. W. Zwiers, 2003: On the ROC score of probability forecasts. J. Climate, 16, 41454150, https://doi.org/10.1175/1520-0442(2003)016<4145:OTRSOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kranjac-Berisavljevic, G., R. M. Blench, and R. Chapman, 2003: Rice production and livelihoods in Ghana: Multi-agency partnerships (MAPS) for technical change in West African agriculture. 86 pp., https://www.odi.org/sites/odi.org.uk/files/odi-assets/publications-opinion-files/3990.pdf.

  • Kumar, A., A. G. Barnston, and M. P. Hoerling, 2001: Seasonal predictions, probabilistic verifications, and ensemble size. J. Climate ,14, 16711676, https://doi.org/10.1175/1520-0442(2001)014<1671:SPPVAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambert, D. K., 2014: Historical impacts of precipitation and temperature on farm production in Kansas. J. Agric. Appl. Econ., 46, 439456, https://ageconsearch.umn.edu/record/189144?ln=en.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legg, T. P., and K. R. Mylne, 2004: Early warnings of severe weather from ensemble forecast information. Wea. Forecasting, 19, 891906, https://doi.org/10.1175/1520-0434(2004)019<0891:EWOSWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebe, J., 2002: Estimation of water storage capacity and evaporation losses of small reservoirs in the Upper East Region of Ghana. Diploma thesis, Geographische Institute der Rhinischen Friedrich-Wilhelms-Universitat Bonn, 106 pp.

  • Mabe, F. N., D. B. Sarpong, and Y. Osei-Asare, 2012: Adaptive capacities of farmers to climate change adaptation strategies and their effects on rice production in the northern region of Ghana. Russ. J. Agric. Socio-Econ. Sci., 11, 917, https://doi.org/10.18551/rjoas.2012-11.02?nosfx=y.

    • Search Google Scholar
    • Export Citation
  • Manzanas, R., J. M. Gutiérrez, J. Fernández, M. D. Frías, A. S. Cofiño, E. Sánchez, J. Voces, and E. Rodríguez, 2012: European provision of regional impact assessment on a seasonal-to-decadal timescale: Report on assessment and combination of S2D predictions, 26 pp., http://www.euporias.eu/system/files/D32.1_Final.pdf.

  • Manzanas, R., L. K. Amekudzi, K. Preko, S. Herrera, and J. M. Gutiérrez, 2014: Precipitation variability and trends in Ghana: An intercomparison of observational and reanalysis products. Climatic Change, 124, 805819, https://doi.org/10.1007/s10584-014-1100-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, I. B., 2003: Binary events. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, I. T. Jolliffe and D. B. Stephenson, Eds., John Wiley, 37–76.

  • Mason, S. J., and A. P. Weigel, 2009: A generic verification framework for administrative purposes. Mon. Wea. Rev., 137, 331349, https://doi.org/10.1175/2008MWR2553.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, S. J., L. Goddard, N. E. Graham, E. Yulaeva, L. Sun, and P. A. Arkin, 1999: The IRI seasonal climate prediction system and the 1997/98 El Niño event. Bull. Amer. Meteor. Soc., 80, 18531873, https://doi.org/10.1175/1520-0477(1999)080<1853:TISCPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mdemu, M. V., 2008: Water productivity in medium and small reservoirs in the Upper East Region (UER) of Ghana. Doctoral dissertation, Rheinischen Friedrich-Wilhelms-Universität, 159 pp.

  • MeteoSwiss, 2017: EasyVerification: Ensemble forecast verification for large data sets. R package version 0.4.2, https://CRAN.R-project.org/package=easyVerification.

  • Morris, M. L., R. Tripp, and A. A. Dankyi, 1999: Adoption and impacts of improved maize production technology: A case study of the Ghana Grains Development Project. International Maize and Wheat Improvement Center (CIMMYT) Economic Program Paper 99-01, 38 pp., https://ageconsearch.umn.edu/bitstream/48767/2/ep99mo01.pdf.

  • Ndamani, F., and T. Watanabe, 2014: Rainfall variability and crop production in Northern Ghana: The case of Lawra district. 8 pp., http://hdl.handle.net/10173/1261.

  • Nderitu, M. J., and T. Ayamga, 2013: Making seasonal forecasts usable in Ghana and Kenya. 4 pp., https://careclimatechange.org/wp-content/uploads/2015/05/JotoAfrika12_FINAL.pdf.

  • Niang, I., O. C. Ruppel, M. A. Abdrabo, A. Essel, C. Lennard, J. Padgham, and P. Urquhart, 2014: Africa. Climate Change 2014: Impacts, Adaptation, and Vulnerability, V. R. Barros et al., Eds., Cambridge University Press, 1199–1265.

  • Nin-Pratt, A., M. Johnson, E. Magalhaes, L. You, X. Diao, and J. Chamberlin, 2011: Yield gaps and potential agricultural growth in West and Central Africa. International Food Policy Research Institute, 140 pp., https://doi.org/10.2499/9780896291829.

    • Crossref
    • Export Citation
  • Nkrumah, F., N. A. B. Klutse, D. C. Adukpo, K. Owusu, K. A. Quagraine, A. Owusu, and W. Gutowski Jr., 2014: Rainfall variability over Ghana: Model versus rain gauge observation. Int. J. Geosci., 5, 673683, https://doi.org/10.4236/ijg.2014.57060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ochieng, J., L. Kirimi, and M. Mathenge, 2016: Effects of climate variability and change on agricultural production: The case of small scale farmers in Kenya. NJAS Wageningen J. Life Sci., 77, 7178, https://doi.org/10.1016/j.njas.2016.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ogutu, G. E., W. H. Franssen, I. Supit, P. Omondi, and R. W. Hutjes, 2017: Skill of ECMWF System-4 ensemble seasonal climate forecasts for East Africa. Int. J. Climatol., 37, 27342756, https://doi.org/10.1002/joc.4876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onyango, E., S. Ochieng, and A. Awiti, 2014: Weather and climate information needs of small-scale farming and fishing communities in western Kenya for enhanced adaptive potential to climate change. Proc. 2012 JKUAT Mechanical Engineering Annual Conf. on Sustainable Research and Innovation, Vol. 4, Jomo Kenyatta University of Agriculture and Technology, 187–193, https://ecommons.aku.edu/eastafrica_eai/9/.

  • Ouédraogo, M., R. B. Zougmoré, S. Barry, L. Somé, and B. Grégoire, 2015: The value and benefits of using seasonal climate forecasts in agriculture: Evidence from cowpea and sesame sectors in climate-smart villages of Burkina Faso. CCAFS Info Note 01-04, 3 pp., https://core.ac.uk/download/pdf/132678659.pdf.

  • Peng, Z., Q. J. Wang, J. C. Bennett, A. Schepen, F. Pappenberger, P. Pokhrel, and Z. Wang, 2014: Statistical calibration and bridging of ECMWF System4 outputs for forecasting seasonal precipitation over China. J. Geophys. Res. Atmos., 119, 71167135, https://doi.org/10.1002/2013JD021162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piani, C., J. O. Haerter, and E. Coppola, 2010: Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol., 99, 187192, https://doi.org/10.1007/s00704-009-0134-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • QWeCI, 2013: ECMWF System 4 forecasts for malaria in Ghana. Quantifying Weather and Climate Impacts on Health in Developing Countries, 16 pp., accessed 11 August 2016, https://www.liverpool.ac.uk/media/livacuk/qweci/SYS4_Report_Ghana.pdf.

  • Reeves, J. L., J. D. Derner, M. A. Sanderson, S. L. Kronberg, J. R. Hendrickson, L. T. Vermeire, M. K. Petersen, and J. G. Irisarri, 2015: Seasonal weather-related decision making for cattle production in the Northern Great Plains. Rangelands, 37, 119124, https://doi.org/10.1016/j.rala.2015.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rockström, J., and Coauthors, 2014: Water Resilience for Human Prosperity. Cambridge University Press, 292 pp.

  • Roncoli, C., K. Ingram, and P. Kirshen, 2002: Reading the rains: Local knowledge and rainfall forecasting in Burkina Faso. Soc. Nat. Resour., 15, 409427, https://doi.org/10.1080/08941920252866774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roncoli, C., and Coauthors, 2009: From accessing to assessing forecasts: An end-to-end study of participatory climate forecast dissemination in Burkina Faso (West Africa). Climatic Change, 92, 433460, https://doi.org/10.1007/s10584-008-9445-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roudier, P., B. Muller, P. d’Aquino, C. Roncoli, M. A. Soumare, L. Batte, and B. Sultan, 2014: The role of climate forecasts in smallholder agriculture: Lessons from participatory research in two communities in Senegal. Climate Risk Manage., 2, 4255, https://doi.org/10.1016/j.crm.2014.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Runge-Metzger, A., and L. Diehl, 1993: Farm household systems in northern Ghana. A case study in farming systems oriented research for the development of improved crop production systems. Nyankpala Agricultural Experiment Station Research Rep., 249 pp.

  • Salack, S., B. Sarr, S. K. Sangare, M. Ly, I. S. Sanda, and H. Kunstmann, 2015: Crop-climate ensemble scenarios to improve risk assessment and resilience in the semi-arid regions of West Africa. Climate Res., 65, 107121, https://doi.org/10.3354/cr01282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salack, S., C. Klein, A. Giannini, B. Sarr, O. N. Worou, N. Belko, J. Bliefernicht, and H. Kunstman, 2016: Global warming induced hybrid rainy seasons in the Sahel. Environ. Res. Lett., 11, 104008, https://doi.org/10.1088/1748-9326/11/10/104008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SARI, 2011: Rice Sector Support Project. 2011 annual report, Savanna Agricultural Research Institute, 108–110, http://www.csir.org.gh/images/CSIR-SARI_Reports/CSIR-SARI%20Annual%20Report%202011.pdf.

  • Schlenker, W., and D. B. Lobell, 2010: Robust negative impacts of climate change on African agriculture. Environ. Res. Lett., 5, 014010, https://doi.org/10.1088/1748-9326/5/1/014010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siegert, S., 2017: SpecsVerification: Forecast verification routines for ensemble forecasts of weather and climate. R package version 0.5.2, https://cran.r-project.org/web/packages/SpecsVerification/index.html.

  • Stockdale, T. N., D. L. T. Anderson, J. O. S. Alves, and M. A. Balmaseda, 1998: Global seasonal rainfall forecasts using a coupled ocean–atmosphere model. Nature, 392, 370373, https://doi.org/10.1038/32861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, R. C., and H. Meinke, 2006: Weather, climate, and farmers: An overview. Meteor. Appl., 13 (S1), 720, https://doi.org/10.1017/S1350482706002519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Street, R. B., 2016: Towards a leading role on climate services in Europe: A research and innovation roadmap. Climate Serv., 1, 25, https://doi.org/10.1016/j.cliser.2015.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sultan, B., and S. Janicot, 2003: The West African monsoon dynamics. Part II: The “preonset” and “onset” of the summer monsoon. J. Climate, 16, 34073427, https://doi.org/10.1175/1520-0442(2003)016<3407:TWAMDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trambauer, P., M. Werner, H. C. Winsemius, S. Maskey, E. Dutra, and S. Uhlenbrook, 2015: Hydrological drought forecasting and skill assessment for the Limpopo River basin, southern Africa. Hydrol. Earth Syst. Sci., 19, 16951711, https://doi.org/10.5194/hess-19-1695-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogel, J., D. Letson, and C. Herrick, 2017: A framework for climate services evaluation and its application to the Caribbean Agrometeorological Initiative. Climate Serv., 6, 6576, https://doi.org/10.1016/j.cliser.2017.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weedon, G. P., G. Balsamo, N. Bellouin, S. Gomes, M. J. Best, and P. Viterbo, 2014: The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res., 50, 75057514, https://doi.org/10.1002/2014WR015638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., and S. J. Mason, 2011: The generalized discrimination score for ensemble forecasts. Mon. Wea. Rev., 139, 30693074, https://doi.org/10.1175/MWR-D-10-05069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., M. A. Liniger, and C. Appenzeller, 2007: The discrete Brier and ranked probability skill scores. Mon. Wea. Rev., 135, 118124, https://doi.org/10.1175/MWR3280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., M. A. Liniger, and C. Appenzeller, 2009: Seasonal ensemble forecasts: Are recalibrated single models better than multimodels? Mon. Wea. Rev., 137, 14601479, https://doi.org/10.1175/2008MWR2773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., S. M. Robeson, and K. Matsuura, 2012: A refined index of model performance. Int. J. Climatol., 32, 20882094, https://doi.org/10.1002/joc.2419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuma-Netshiukhwi, G., K. Stigter, and S. Walker, 2013: Use of traditional weather/climate knowledge by farmers in the South-Western Free State of South Africa: Agrometeorological learning by scientists. Atmosphere, 4, 383410, https://doi.org/10.3390/atmos4040383.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1529 487 268
PDF Downloads 955 176 10