Spatiotemporal Analysis of Near-Miss Violent Tornadoes in the United States

Joshua J. Hatzis Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma

Search for other papers by Joshua J. Hatzis in
Current site
Google Scholar
PubMed
Close
,
Jennifer Koch Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma

Search for other papers by Jennifer Koch in
Current site
Google Scholar
PubMed
Close
, and
Harold E. Brooks NOAA/National Severe Storms Laboratory and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Harold E. Brooks in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In the hazards literature, a near-miss is defined as an event that had a nontrivial probability of causing loss of life or property but did not due to chance. Frequent near-misses can desensitize the public to tornado risk and reduce responses to warnings. Violent tornadoes rarely hit densely populated areas, but when they do they can cause substantial loss of life. It is unknown how frequently violent tornadoes narrowly miss a populated area. To address this question, this study looks at the spatial distribution of possible exposures of people to violent tornadoes in the United States. We collected and replicated tornado footprints for all reported U.S. violent tornadoes between 1995 and 2016, across a uniform circular grid, with a radius of 40 km and a resolution of 0.5 km, surrounding the centroid of the original footprint. We then estimated the number of people exposed to each tornado footprint using proportional allocation. We found that violent tornadoes tended to touch down in less populated areas with only 33.1% potentially impacting 5000 persons or more. Hits and near-misses were most common in the Southern Plains and Southeast United States with the highest risk in central Oklahoma and northern Alabama. Knowledge about the location of frequent near-misses can help emergency managers and risk communicators target communities that might be more vulnerable, due to an underestimation of tornado risk, for educational campaigns. By increasing educational efforts in these high-risk areas, it might be possible to improve local knowledge and reduce casualties when violent tornadoes do hit.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joshua J. Hatzis, jjhatzis@ou.edu

Abstract

In the hazards literature, a near-miss is defined as an event that had a nontrivial probability of causing loss of life or property but did not due to chance. Frequent near-misses can desensitize the public to tornado risk and reduce responses to warnings. Violent tornadoes rarely hit densely populated areas, but when they do they can cause substantial loss of life. It is unknown how frequently violent tornadoes narrowly miss a populated area. To address this question, this study looks at the spatial distribution of possible exposures of people to violent tornadoes in the United States. We collected and replicated tornado footprints for all reported U.S. violent tornadoes between 1995 and 2016, across a uniform circular grid, with a radius of 40 km and a resolution of 0.5 km, surrounding the centroid of the original footprint. We then estimated the number of people exposed to each tornado footprint using proportional allocation. We found that violent tornadoes tended to touch down in less populated areas with only 33.1% potentially impacting 5000 persons or more. Hits and near-misses were most common in the Southern Plains and Southeast United States with the highest risk in central Oklahoma and northern Alabama. Knowledge about the location of frequent near-misses can help emergency managers and risk communicators target communities that might be more vulnerable, due to an underestimation of tornado risk, for educational campaigns. By increasing educational efforts in these high-risk areas, it might be possible to improve local knowledge and reduce casualties when violent tornadoes do hit.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joshua J. Hatzis, jjhatzis@ou.edu
Save
  • Abbey, R., 1976: Risk probabilities associated with tornado wind speeds. Proc. Symp. on Tornadoes: Assessment of Knowledge and Implications for Man, Lubbock, TX, Texas Tech University, 177–236.

  • Adlerman, E. J., K. K. Droegemeier, and R. Davies-Jones, 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56, 20452069, https://doi.org/10.1175/1520-0469(1999)056<2045:ANSOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agee, E., and S. Childs, 2014: Adjustments in tornado counts, F-scale intensity, and path width for assessing significant tornado destruction. J. Appl. Meteor. Climatol., 53, 14941505, https://doi.org/10.1175/JAMC-D-13-0235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anselin, L., 1995: Local indicators of spatial association—LISA. Geogr. Anal., 27, 93115, https://doi.org/10.1111/j.1538-4632.1995.tb00338.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnold, K., D. Golino, and N. McRoberts, 2017: A synoptic analysis of the temporal and spatial aspects of grapevine leafroll disease in a historic Napa vineyard and experimental vine blocks. Phytopathology, 107, 418426, https://doi.org/10.1094/PHYTO-06-16-0235-R.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., 2007: Spatial and temporal analysis of tornado fatalities in the United States: 1880–2005. Wea. Forecasting, 22, 12141228, https://doi.org/10.1175/2007WAF2007004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., and S. M. Strader, 2016: Recipe for disaster: How the dynamic ingredients of risk and exposure are changing the tornado disaster landscape. Bull. Amer. Meteor. Soc., 97, 767786, https://doi.org/10.1175/BAMS-D-15-00150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., A. J. Krmenec, and R. Schwantes, 2008: Vulnerability due to nocturnal tornadoes. Wea. Forecasting, 23, 795807, https://doi.org/10.1175/2008WAF2222132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., S. Strader, T. Rosencrants, and A. J. Krmenec, 2014: Spatiotemporal changes in tornado hazard exposure: The case of the expanding bull’s-eye effect in Chicago, Illinois. Wea. Climate Soc., 6, 175193, https://doi.org/10.1175/WCAS-D-13-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, L. R., E. C. Gruntfest, M. H. Hayden, D. M. Schultz, and C. Benight, 2007: False alarms and close calls: A conceptual model of warning accuracy. Wea. Forecasting, 22, 11401147, https://doi.org/10.1175/WAF1031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biddle, M. D., 1994: Tornado hazards, coping styles and modernized warning systems. Ph.D. thesis, University of Oklahoma, 286 pp.

  • Blair, S. F., and E. P. Lunde, 2010: Tornadoes impacting interstates: Service and societal considerations. Electron. J. Severe Storms Meteor., 5 (4), http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/64/73.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., J. C. Snyder, and J. B. Houser, 2015: A multiscale overview of the El Reno, Oklahoma, tornadic supercell of 31 May 2013. Wea. Forecasting, 30, 525552, https://doi.org/10.1175/WAF-D-14-00152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boruff, B. J., J. A. Easoz, S. D. Jones, H. R. Landry, J. D. Mitchem, and S. L. Cutter, 2003: Tornado hazards in the United States. Climate Res., 24, 103117, https://doi.org/10.3354/cr024103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2004: On the relationship of tornado path length and width to intensity. Wea. Forecasting, 19, 310319, https://doi.org/10.1175/1520-0434(2004)019<0310:OTROTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., and C. A. Doswell III, 2002: Deaths in the 3 May 1999 Oklahoma City tornado from a historical perspective. Wea. Forecasting, 17, 354361, https://doi.org/10.1175/1520-0434(2002)017<0354:DITMOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and M. P. Kay, 2003: Climatological estimates of local daily tornado probability for the United States. Wea. Forecasting, 18, 626640, https://doi.org/10.1175/1520-0434(2003)018<0626:CEOLDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and D. Sutter, 2008: Low-level winds in tornadoes and potential catastrophic tornado impacts in urban areas. Bull. Amer. Meteor. Soc., 89, 8790.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., G. W. Carbin, and P. T. Marsh, 2014: Increased variability of tornado occurrence in the United States. Science, 346, 349352, https://doi.org/10.1126/science.1257460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brotzge, J., and W. Donner, 2013: The tornado warning process: A review of current research, challenges, and opportunities. Bull. Amer. Meteor. Soc., 94, 17151733, https://doi.org/10.1175/BAMS-D-12-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brotzge, J., S. Erickson, and H. Brooks, 2011: A 5-yr climatology of tornado false alarms. Wea. Forecasting, 26, 534544, https://doi.org/10.1175/WAF-D-10-05004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, D., and Coauthors, 2014: 20 May 2013 Moore, Oklahoma, tornado: Damage survey and analysis. Wea. Forecasting, 29, 12291237, https://doi.org/10.1175/WAF-D-14-00039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coleman, T. A., and P. G. Dixon, 2014: An objective analysis of tornado risk in the United States. Wea. Forecasting, 29, 366376, https://doi.org/10.1175/WAF-D-13-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Concannon, P. R., H. E. Brooks, and C. A. Doswell III, 2000: Climatological risk of strong and violent tornadoes in the United States. Second Conf. on Environmental Applications, Long Beach, CA, Amer. Meteor. Soc., 212–219, https://www.nssl.noaa.gov/users/brooks/public_html/concannon/.

  • Diffenbaugh, N. S., R. J. Trapp, and H. Brooks, 2008: Does global warming influence tornado activity? Eos, Trans. Amer. Geophys. Union, 89, 553554, https://doi.org/10.1029/2008EO530001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., M. Scherer, and R. J. Trapp, 2013: Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proc. Natl. Acad. Sci. USA, 110, 16 36116 366, https://doi.org/10.1073/pnas.1307758110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dillon, R. L., C. H. Tinsley, and M. Cronin, 2011: Why near-miss events can decrease an individual’s protective response to hurricanes. Risk Anal., 31, 440449, https://doi.org/10.1111/j.1539-6924.2010.01506.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dillon, R. L., C. H. Tinsley, and W. J. Burns, 2014: Near-misses and future disaster preparedness. Risk Anal., 34, 19071922, https://doi.org/10.1111/risa.12209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, P. G., A. E. Mercer, J. Choi, and J. S. Allen, 2011: Tornado risk analysis: Is Dixie Alley an extension of Tornado Alley? Bull. Amer. Meteor. Soc., 92, 433441, https://doi.org/10.1175/2010BAMS3102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, 2007: Small sample size and data quality issues illustrated using tornado occurrence data. Electron. J. Severe Storms Meteor., 2 (5), http://www.ejssm.org/ojs/index.php/ejssm/article/viewarticle/26/27.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and D. W. Burgess, 1988: On some issues of United States tornado climatology. Mon. Wea. Rev., 116, 495501, https://doi.org/10.1175/1520-0493(1988)116<0495:OSIOUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, A. R. Moller, and H. E. Brooks, 1999: Storm spotting and public awareness since the first tornado forecasts of 1948. Wea. Forecasting, 14, 544557, https://doi.org/10.1175/1520-0434(1999)014<0544:SSAPAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and N. Dotzek, 2009: On the implementation of the enhanced Fujita scale in the USA. Atmos. Res., 93, 554563, https://doi.org/10.1016/j.atmosres.2008.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, G. W. Carbin, and H. E. Brooks, 2012: The tornadoes of spring 2011 in the USA: An historical perspective. Weather, 67, 8894, https://doi.org/10.1002/wea.1902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, R., and J. Schaefer, 2012: Downtown tornadoes. Storm Prediction Center, accessed 6 August 2018, https://www.spc.noaa.gov/faq/tornado/downtown.html.

  • Edwards, R., J. G. LaDue, J. T. Ferree, K. Scharfenberg, C. Maier, and W. L. Coulbourne, 2013: Tornado intensity estimation: Past, present, and future. Bull. Amer. Meteor. Soc., 94, 641653, https://doi.org/10.1175/BAMS-D-11-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., L. E. Michaels, K. N. Scheitlin, and I. J. Elsner, 2013: The decreasing population bias in tornado reports across the central plains. Wea. Climate Soc., 5, 221232, https://doi.org/10.1175/WCAS-D-12-00040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., S. C. Elsner, and T. H. Jagger, 2015: The increasing efficiency of tornado days in the United States. Climate Dyn., 45, 651659, https://doi.org/10.1007/s00382-014-2277-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., F.-W. Gerstengarbe, and P. C. Werner, 2001: Climate shifts during the last century. Climatic Change, 50, 405417, https://doi.org/10.1023/A:1010699428863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1971: Proposed characterization of tornadoes and hurricanes by area and intensity. University of Chicago SMRP Research Paper 91, 42 pp.

  • Fujita, T. T., and A. D. Pearson, 1973: Results of FPP classification of 1971 and 1972 tornadoes. Eighth Conf. on Severe Local Storms, Denver CO, Amer. Meteor. Soc., 142–145.

  • Galway, J. G., 1981: Ten famous tornado outbreaks. Weatherwise, 34, 100109, https://doi.org/10.1080/00431672.1981.9931955.

  • Gensini, V. A., and W. S. Ashley, 2011: Climatology of potentially severe convective environments from the North American Regional Reanalysis. Electron. J. Severe Storms Meteor., 6 (8), http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/85.

    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., and T. L. Mote, 2015: Downscaled estimates of late 21st century severe weather from CCSM3. Climatic Change, 129, 307321, https://doi.org/10.1007/s10584-014-1320-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., T. L. Mote, and H. E. Brooks, 2014: Severe-thunderstorm reanalysis environments and collocated radiosonde observations. J. Appl. Meteor. Climatol., 53, 742751, https://doi.org/10.1175/JAMC-D-13-0263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grazulis, T. P., 1993: Significant Tornadoes: 1680–1991. Environmental Films, 1326 pp.

  • Grazulis, T. P., 1997: Significant Tornadoes (Update): 1992–1995. Environmental Films, 118 pp.

  • Greenbaum, R. T., 2002: A spatial study of teachers? Salaries in Pennsylvania school districts. J. Labor Res., 23, 6986, https://doi.org/10.1007/s12122-002-1019-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffith, D. A., and R. Haining, 2006: Beyond mule kicks: The Poisson distribution in geographical analysis. Geogr. Anal., 38, 123139, https://doi.org/10.1111/j.0016-7363.2006.00679.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, S. G., and W. S. Ashley, 2008: Effects of urban sprawl on the vulnerability to a significant tornado impact in northeastern Illinois. Nat. Hazards Rev., 9, 209219, https://doi.org/10.1061/(ASCE)1527-6988(2008)9:4(209).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchens, N. M., H. E. Brooks, and M. P. Kay, 2013: Objective limits on forecasting skill of rare events. Wea. Forecasting, 28, 525534, https://doi.org/10.1175/WAF-D-12-00113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoekstra, S., K. Klockow, R. Riley, J. Brotzge, H. Brooks, and S. Erickson, 2011: A preliminary look at the social perspective of warn-on-forecast: Preferred tornado warning lead time and the general public’s perceptions of weather risks. Wea. Climate Soc., 3, 128140, https://doi.org/10.1175/2011WCAS1076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, R. L., 2013: To the southwest corner: Tornado myths and socio-demographic vulnerability. M.A. thesis, Department of Geography, Kent State University, 69 pp.

  • Kaplan, S., and B. J. Garrick, 1981: On the quantitative definition of risk. Risk Anal., 1, 1127, https://doi.org/10.1111/j.1539-6924.1981.tb01350.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. 4th ed. Charles Griffin, 202 pp.

  • Klockow, K. E., R. A. Peppler, and R. A. McPherson, 2014: Tornado folk science in Alabama and Mississippi in the 27 April 2011 tornado outbreak. GeoJournal, 79, 791804, https://doi.org/10.1007/s10708-013-9518-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurdzo, J. M., D. J. Bodine, B. L. Cheong, and R. D. Palmer, 2015: High-temporal resolution polarimetric X-band Doppler radar observations of the 20 May 2013 Moore, Oklahoma, tornado. Mon. Wea. Rev., 143, 27112735, https://doi.org/10.1175/MWR-D-14-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legendre, P., and L. Legendre, 2012: Numerical Ecology. 3rd ed. Elsevier, 990 pp.

  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, https://doi.org/10.2307/1907187.

  • Manson, S., J. Schroeder, D. Van Riper, and S. Ruggles, 2017: IPUMS National Historical Geographic Information System: Version 12.0. University of Minnesota, Integrated Public Use Microdata Series, doi:10.18128/D050.V12.0.

    • Crossref
    • Export Citation
  • McDonald, J. R., and K. C. Mehta, 2006: A recommendation for an Enhanced Fujita scale (EF-Scale). Wind Science and Engineering Center, Texas Tech University, 95 pp., https://www.spc.noaa.gov/faq/tornado/ef-ttu.pdf.

  • McDonald, J. R., K. C. Mehta, and S. Mani, 2003: F-scale modification process and proposed revisions. preprints. Symp. on the F-Scale and Severe-Weather Damage Assessment, Long Beach, CA, Amer. Meteor. Soc., 1.1, https://ams.confex.com/ams/pdfpapers/53999.pdf .

  • Merrell, D., K. M. Simmons, and D. Sutter, 2002: Taking shelter: Estimating the safety benefits of tornado safe rooms. Wea. Forecasting, 17, 619625, https://doi.org/10.1175/1520-0434(2002)017<0619:TSETSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrell, D., K. M. Simmons, and D. Sutter, 2005: The determinants of tornado casualties and the benefits of tornado shelters. Land Econ., 81, 8799, https://doi.org/10.3368/le.81.1.87.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moran, P. A., 1950: Notes on continuous stochastic phenomena. Biometrika, 37, 1723, https://doi.org/10.2307/2332142.

  • Murphy, T. A., and K. R. Knupp, 2013: An analysis of cold season supercell storms using the synthetic dual-Doppler technique. Mon. Wea. Rev., 141, 602624, https://doi.org/10.1175/MWR-D-12-00035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NWS, 1999: The Great Plains tornado outbreak of May 3-4, 1999. National Weather Service, Norman, OK, accessed 24 March 2018, https://www.weather.gov/oun/events-19990503.

  • NWS, 2011: Historic Outbreak of April 27, 2011. National Weather Service, Birmingham, AL, accessed 24 March 2018, https://www.weather.gov/bmx/event_04272011.

  • NWS, 2017: 6th anniversary of the Joplin tornado—May 22nd, 2011. National Weather Service, Springfield, MO, accessed 24 March 2018, https://www.weather.gov/sgf/news_events_2011may22.

  • NWS, 2018: NWS Damage Assessment Toolkit. National Weather Service, https://apps.dat.noaa.gov/StormDamage/DamageViewer/.

  • Paul, B. K., and M. Stimers, 2012: Exploring probable reasons for record fatalities: The case of 2011 Joplin, Missouri, tornado. Nat. Hazards, 64, 15111526, https://doi.org/10.1007/s11069-012-0313-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paulikas, M. J., 2015: Potential tornado vulnerability variance over a 24-hour cycle for an urban metropolitan region. Ph.D. thesis, Kent State University, 209 pp.

  • Powell, M. D., and S. D. Aberson, 2001: Accuracy of United States tropical cyclone landfall forecasts in the Atlantic basin (1976–2000). Bull. Amer. Meteor. Soc., 82, 27492767, https://doi.org/10.1175/1520-0477(2001)082<2749:AOUSTC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prevatt, D. O., and Coauthors, 2012: Making the case for improved structural design: Tornado outbreaks of 2011. Leadership Manage. Eng., 12, 254270, https://doi.org/10.1061/(ASCE)LM.1943-5630.0000192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prosser, N. E., 1976: Denver’s near-miss tornado of 1975. Mon. Wea. Rev., 104, 800803, https://doi.org/10.1175/1520-0493(1976)104<0800:DNMTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rae, S., and J. Stefkovich, 2000: The tornado damage risk assessment predicting the impact of a big outbreak in Dallas-Fort Worth, Texas. 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 9.6, https://ams.confex.com/ams/Sept2000/techprogram/paper_16405.htm.

  • Ratcliffe, M., C. Burd, K. Holder, and A. Fields, 2016: Defining rural at the U.S. Census Bureau. American community survey and geography brief, 8 pp., https://www.census.gov/library/publications/2016/acs/acsgeo-1.html.

  • Sayemuzzaman, M., and M. K. Jha, 2014: Seasonal and annual precipitation time series trend analysis in North Carolina, United States. Atmos. Res., 137, 183194, https://doi.org/10.1016/j.atmosres.2013.10.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherman-Morris, K., 2010: Tornado warning dissemination and response at a university campus. Nat. Hazards, 52, 623638, https://doi.org/10.1007/s11069-009-9405-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, K. M., and D. Sutter, 2009: False alarms, tornado warnings, and tornado casualties. Wea. Climate Soc., 1, 3853, https://doi.org/10.1175/2009WCAS1005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, K. M., and D. Sutter, 2011: Economic and Societal Impacts of Tornadoes. 1st ed., Amer. Meteor. Soc., 282 pp.

    • Crossref
    • Export Citation
  • Simmons, K. M., and D. Sutter, 2012: The 2011 tornadoes and the future of tornado research. Bull. Amer. Meteor. Soc., 93, 959961, https://doi.org/10.1175/BAMS-D-11-00126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., and H. B. Bluestein, 2014: Some considerations for the use of high-resolution mobile radar data in tornado intensity determination. Wea. Forecasting, 29, 799827, https://doi.org/10.1175/WAF-D-14-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SPC, 2017: SVRGIS [Severe Weather GIS]. Storm Prediction Center, Norman, OK, accessed 1 October 2017, http://www.spc.noaa.gov/gis/svrgis/.

  • Stewart, A. E., J. A. Knox, and P. Schneider, 2018: Reaching students and parents through weather science and safety workshops for teachers. Bull. Amer. Meteor. Soc., 99, 15451555, https://doi.org/10.1175/BAMS-D-17-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strader, S. M., W. Ashley, A. Irizarry, and S. Hall, 2015: A climatology of tornado intensity assessments. Meteor. Appl., 22, 513524, https://doi.org/10.1002/met.1482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strader, S. M., T. J. Pingel, and W. S. Ashley, 2016: A Monte Carlo model for estimating tornado impacts. Meteor. Appl., 23, 269281, https://doi.org/10.1002/met.1552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strader, S. M., W. S. Ashley, T. J. Pingel, and A. J. Krmenec, 2017a: Observed and projected changes in United States tornado exposure. Wea. Climate Soc., 9, 109123, https://doi.org/10.1175/WCAS-D-16-0041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strader, S. M., W. S. Ashley, T. J. Pingel, and A. J. Krmenec, 2017b: Projected 21st century changes in tornado exposure, risk, and disaster potential. Climatic Change, 141, 301313, https://doi.org/10.1007/s10584-017-1905-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strader, S. M., W. S. Ashley, T. J. Pingel, and A. J. Krmenec, 2018: How land use alters the tornado disaster landscape. Appl. Geogr., 94, 1829, https://doi.org/10.1016/j.apgeog.2018.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tinsley, C. H., R. L. Dillon, and M. A. Cronin, 2012: How near-miss events amplify or attenuate risky decision making. Manage. Sci., 58, 15961613, https://doi.org/10.1287/mnsc.1120.1517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., S. A. Tessendorf, E. S. Godfrey, and H. E. Brooks, 2005: Tornadoes from squall lines and bow echoes. Part I: Climatological distribution. Wea. Forecasting, 20, 2334, https://doi.org/10.1175/WAF-835.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., N. S. Diffenbaugh, H. E. Brooks, M. E. Baldwin, E. D. Robinson, and J. S. Pal, 2007: Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proc. Natl. Acad. Sci. USA, 104, 19 71919 723, https://doi.org/10.1073/pnas.0705494104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • U.S. Census Bureau, 2015: 2011–2015 American Community Survey 5-Year Estimates. American Community Survey, accessed 1 July 2018, https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk.

  • Verbout, S. M., H. E. Brooks, L. M. Leslie, and D. M. Schultz, 2006: Evolution of the U.S. tornado database: 1954–2003. Wea. Forecasting, 21, 8693, https://doi.org/10.1175/WAF910.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., L. V. Alexander, and F. W. Zwiers, 2013: Global increasing trends in annual maximum daily precipitation. J. Climate, 26, 39043918, https://doi.org/10.1175/JCLI-D-12-00502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., C. Alexander, P. Robinson, and Y. Richardson, 2007: Low-level winds in tornadoes and potential catastrophic tornado impacts in urban areas. Bull. Amer. Meteor. Soc., 88, 3146, https://doi.org/10.1175/BAMS-88-1-31.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. Kosiba, P. Robinson, and T. Marshall, 2014: The role of multiple-vortex tornado structure in causing storm researcher fatalities. Bull. Amer. Meteor. Soc., 95, 3145, https://doi.org/10.1175/BAMS-D-13-00221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, S., P. Pilon, and G. Cavadias, 2002: Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol., 259, 254271, https://doi.org/10.1016/S0022-1694(01)00594-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 615 272 108
PDF Downloads 351 97 3