• Adams-Selin, R. D., and C. L. Ziegler, 2016: Forecasting hail using a one-dimensional hail growth model within WRF. Mon. Wea. Rev., 144, 49194939, https://doi.org/10.1175/MWR-D-16-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agee, E., and S. J. Childs, 2014: Adjustments in tornado counts, F-scale intensity, and path width for assessing significant tornado destruction. J. Appl. Meteor. Climatol., 53, 14941505, https://doi.org/10.1175/JAMC-D-13-0235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., and M. K. Tippett, 2015: The characteristics of United States hail reports: 1955-2014. Electron. J. Severe Storms Meteor., 10 (3), https://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/149.

    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. K. Tippett, and A. H. Sobel, 2015: An empirical model relating U.S. monthly hail occurrence to large-scale meteorological environment. J. Adv. Model. Earth Syst., 7, 226243, https://doi.org/10.1002/2014MS000397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., and Coauthors, 2020: Understading hail in the earth system. Rev. Geophys., 58, e2019RG000665, https://doi.org/10.1029/2019RG000665.

  • Arbuckle, J. G., and Coauthors, 2013: Climate change beliefs, concerns, and attitudes toward adaptation and mitigation among farmers in the Midwestern United States. Climatic Change, 117, 943950, https://doi.org/10.1007/s10584-013-0707-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbuckle, J. G., J. Hobbs, A. Loy, L. W. Morton, L. S. Prokopy, and J. Tyndall, 2014: Understanding Corn Belt farmer perspectives on climate change to inform engagement strategies for adaptation and mitigation. J. Soil Water Conserv., 69, 505516, https://doi.org/10.2489/jswc.69.6.505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ash, K. D., 2017: A qualitative study of mobile home resident perspectives on tornadoes and tornado protective actions in South Carolina, USA. GeoJournal, 82, 533552, https://doi.org/10.1007/s10708-016-9700-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battaglia, M., C. Lee, W. Thomason, J. Fike, and A. Sadeghpour, 2019: Hail damage impacts on corn productivity: A review. Crop Sci., 59 (1), 114, https://doi.org/10.2135/cropsci2018.04.0285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bostrom, A., B. Fischhoff, and M. G. Morgan, 1992: Characterizing mental models of hazardous processes: A methodology and an application to radon. J. Soc. Issues, 48, 85100, https://doi.org/10.1111/j.1540-4560.1992.tb01946.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bostrom, A., M. G. Morgan, B. Fischhoff, and D. Read, 1994: What do people know about global climate change? 1. Mental models. Risk Anal., 14, 959970, https://doi.org/10.1111/j.1539-6924.1994.tb00065.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bostrom, A., R. E. Morss, J. K. Lazo, J. L. Demuth, H. Lazrus, and R. Hudson, 2016: A mental models study of hurricane forecast and warning production, communication, and decision-making. Wea. Climate Soc., 8, 111129, https://doi.org/10.1175/WCAS-D-15-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, V., and V. Clarke, 2006: Using thematic analysis in psychology. Qual. Res. Psychol., 3, 77101, https://doi.org/10.1191/1478088706qp063oa.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, V., and V. Clarke, 2019: Reflecting on reflexive thematic analysis. Qual. Res. Sport Exercise Health, 11, 589597, https://doi.org/10.1080/2159676X.2019.1628806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, V., V. Clarke, N. Hayfield, and G. Terry, 2018: Thematic analysis. Handbook of Research Methods in Health Social Sciences, P. Liamputtong, Ed., Springer, 2248 pp.

    • Crossref
    • Export Citation
  • Brimelow, J., W. Burrows, and J. Hanesiak, 2017: The changing hail threat over North America in response to anthropogenic climate change. Nat. Climate Change, 7, 516522, https://doi.org/10.1038/nclimate3321.

    • Search Google Scholar
    • Export Citation
  • Brotzge, J., and W. Donner, 2013: The tornado warning process: A review of current research, challenges, and opportunities. Bull. Amer. Meteor. Soc., 94, 17151733, https://doi.org/10.1175/BAMS-D-12-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carr, R. H., B. Montz, K. Maxfield, S. Hoekstra, K. Semmens, and E. Goldman, 2016: Effectively communicating risk and uncertainty to the public: Assessing the National Weather Service’s flood forecast and warning tools. Bull. Amer. Meteor. Soc., 97, 16491665, https://doi.org/10.1175/BAMS-D-14-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casteel, M. A., 2016: Communicating increased risk: An empirical investigation of the National Weather Service’s impact-based warnings. Wea. Climate Soc., 8, 219232, https://doi.org/10.1175/WCAS-D-15-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., Jr., 1971: Hailfall characteristics related to crop damage. J. Appl. Meteor., 10, 270274, https://doi.org/10.1175/1520-0450(1971)010<0270:HCRTCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., Jr., 1977: The climatology of hail in North America. Hail: A Review of Hail Science and Hail Suppression, Amer. Meteor. Soc., 107–133.

    • Crossref
    • Export Citation
  • Changnon, S. A., Jr., and D. Changnon, 2000: Long-term fluctuations in hail incidences in the United States. J. Climate, 13, 658664, https://doi.org/10.1175/1520-0442(2000)013<0658:LTFIHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Childs, S. J., and R. S. Schumacher, 2018a: Cold-season tornado risk communication: Case studies from November 2016 to February 2017. Wea. Climate Soc., 10, 419433, https://doi.org/10.1175/WCAS-D-17-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Childs, S. J., and R. S. Schumacher, 2018b: The anomalously large 2018 hail season of Eastern Colorado: A local perspective on a national trend. 29th Conf. on Severe Local Storms, Stowe, VT, Amer. Meteor. Soc., 33, https://ams.confex.com/ams/29SLS/webprogram/Handout/Paper348238/SJChilds_SLS2018_Poster.pdf.

  • Childs, S. J., and R. S. Schumacher, 2019: An updated severe hail and tornado climatology for eastern Colorado. J. Appl. Meteor. Climatol., 58, 22732293, https://doi.org/10.1175/JAMC-D-19-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Childs, S. J., R. S. Schumacher, and S. M. Strader, 2020: Projecting end-of-century human exposure to tornadoes and severe hailstorms in eastern Colorado: Meteorological and population perspectives. Wea. Climate Soc., 12, 575595, https://doi.org/10.1175/WCAS-D-19-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choudhary, J. S., G. Shukla, C. S. Prabhakar, S. Maurya, B. Das, and S. Kumar, 2012: Assessment of local perceptions on climate change and coping strategies in Chotanagpur Plateau of Eastern India. J. Prog. Agric., 3, 815.

    • Search Google Scholar
    • Export Citation
  • Chowdhury, P. D., C. E. Haque, and S. M. Driedger, 2012: Public versus expert knowledge and perception of climate change-induced heat wave risk: A modified mental model approach. J. Risk Res., 15, 149168, https://doi.org/10.1080/13669877.2011.601319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chriestenson, C., M. Martin, D. Thilmany McFadden, M. Sullins, and B. Jablonski, 2016: Public attitudes about agriculture in Colorado. Colorado Department of Agriculture Rep., 79 pp., https://www.colorado.gov/pacific/sites/default/files/2016%20Public%20Attitudes%20Report%20Final.pdf.

  • Cintineo, J. L., T. M. Smith, and V. Lakshmanan, 2012: An objective high-resolution hail climatology of the contiguous United States. Wea. Forecasting, 27, 12351248, https://doi.org/10.1175/WAF-D-11-00151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, R. S., and M. Hamlen, 2015: Community disaster resilience and the rural resilience index. Amer. Behav. Sci., 59, 220237, https://doi.org/10.1177/0002764214550297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cutter, S. L., 1996: Vulnerability to environmental hazards. Prog. Hum. Geogr., 20, 529539, https://doi.org/10.1177/030913259602000407.

  • Cutter, S. L., and C. Finch, 2008: Temporal and spatial changes in social vulnerability to natural hazards. Proc. Natl. Acad. Sci. USA, 105, 23012306, https://doi.org/10.1073/pnas.0710375105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cutter, S. L., J. T. Mitchell, and M. S. Scott, 2000: Revealing the vulnerability of people and places: A case study of Georgetown County, South Carolina. Ann. Assoc. Amer. Geogr., 90, 713737, https://doi.org/10.1111/0004-5608.00219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cutter, S. L., L. Barnes, M. Berry, C. Burton, E. Evans, E. Tate, and J. Webb, 2008: A place-based model for understanding community resilience to natural disasters. Global Environ. Change, 18, 598606, https://doi.org/10.1016/j.gloenvcha.2008.07.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cutter, S. L., K. D. Ash, and C. T. Emrich, 2016: Urban-rural differences in disaster resilience. Ann. Amer. Assoc. Geogr., 106, 12361252, https://doi.org/10.1080/24694452.2016.1194740.

    • Search Google Scholar
    • Export Citation
  • Davies, S., A. Davies, B. Goldbach, and M. Sullins, 2012: The contribution of agriculture to Colorado’s economy: An executive summary. Colorado State University Doc., 4 pp., https://www.colorado.gov/pacific/sites/default/files/CSU%20Executive%20Summary.pdf.

  • Demeritt, D., S. Nobert, H. Cloke, and F. Pappenberger, 2010: Challenges in communicating and using ensembles in operational flood forecasting. Meteor. Appl., 17, 209222, https://doi.org/10.1002/met.194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., R. E. Morss, B. H. Morrow, and J. K. Lazo, 2012: Creation and communication of hurricane risk information. Bull. Amer. Meteor. Soc., 93, 11331145, https://doi.org/10.1175/BAMS-D-11-00150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., and Coauthors, 2018: “Sometimes da #beachlife ain’t always da wave”: Understanding people’s evolving hurricane risk communication, risk assessments, and responses using twitter narratives. Wea. Climate Soc., 10, 537560, https://doi.org/10.1175/WCAS-D-17-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., and Coauthors, 2020: Recommendations for developing useful and usable convection-allowing model ensemble guidance for NWS forecasters. Wea. Forecasting, 34, 13811406, https://doi.org/10.1175/WAF-D-19-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, W. R., 2007: An integrated model of risk perception and protective action: Public response to tornado warnings. Ph.D. thesis, University of Delaware, 212 pp.

  • Doswell, C. A., III, 2001: Severe convective storms—An overview. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 1–26.

    • Crossref
    • Export Citation
  • Friedrich, K., and Coauthors, 2019: CHAT: The Colorado Hail Accumulation from Thunderstorms Project. Bull. Amer. Meteor. Soc., 100, 459471, https://doi.org/10.1175/BAMS-D-16-0277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., S. E. Haupt, D. W. Nychka, and G. Thompson, 2019: Interpretable deep learning for spatial analysis of severe hailstorms. Mon. Wea. Rev., 147, 28272845, https://doi.org/10.1175/MWR-D-18-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harpe, S. E., 2015: How to analyze Likert and other rating scale data. Curr. Pharm. Teach. Learn., 7, 836850, https://doi.org/10.1016/j.cptl.2015.08.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalina, E. A., K. Friedrich, B. C. Motta, W. Deierling, G. T. Stano, and N. N. Rydell, 2016: Colorado plowable hailstorms: Synoptic weather, radar, and lightning characteristics. Wea. Forecasting, 31, 663693, https://doi.org/10.1175/WAF-D-15-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapucu, N., C. V. Hawkins, and F. I. Rivera, 2013: Disaster preparedness and resilience for rural communities. Risks Hazards Crisis Public Policy, 4, 215233, https://doi.org/10.1002/rhc3.12043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klockow, K. E., R. A. Peppler, and R. A. McPherson, 2014: Tornado folk science in Alabama and Mississippi in the 27 April 2011 tornado outbreak. GeoJournal, 79, 791804, https://doi.org/10.1007/s10708-013-9518-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, D., A. Chatrchyan, D. Tobin, K. Thorn, S. Allred, and R. Radhakrishna, 2018: Climate change and agriculture in New York and Pennsylvania: Risk perceptions, vulnerability and adaptation among farmers. Renewable Agric. Food Syst., 33, 197205, https://doi.org/10.1017/S1742170517000710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazrus, H., R. E. Morss, J. L. Demuth, J. K. Lazo, and A. Bostrom, 2016: “Know what to do if you encounter a flash flood”: Mental models analysis for improving flash flood risk communication and public decision making. Risk Anal., 36, 411427, https://doi.org/10.1111/risa.12480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemons, H., 1942: Hail in American agriculture. Econ. Geogr., 18, 363378, https://doi.org/10.2307/141444.

  • Lepore, C., M. K. Tippett, and J. T. Allen, 2018: CFSv2 monthly forecasts of tornado and hail activity. Wea. Forecasting, 33, 12831297, https://doi.org/10.1175/WAF-D-18-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindell, M. K., and R. W. Perry, 1992: Behavioral Foundations of Community Emergency Planning. Hemisphere, 630 pp.

  • Lindell, M. K., and R. W. Perry, 2004: Communicating Environmental Risk in Multiethnic Communities. Vol 7, Communicating Effectively in Multicultural Contexts. Sage, 272 pp.

  • Lindell, M. K., and R. W. Perry, 2012: The protective action decision model: Theoretical modifications and additional evidence. Risk Anal., 32, 616632, https://doi.org/10.1111/j.1539-6924.2011.01647.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lollato, R., B. R. Jaenisch, R. Maeoka, A. de Oliveira Silva, and C. Sciarresi, 2017: Timing and positioning of simulated hail damage effects on wheat yield in Kansas. Kansas Agric. Exp. Stn. Res. Rep., 3, 35, https://doi.org/10.4148/2378-5977.7452.

    • Search Google Scholar
    • Export Citation
  • Mase, A. S., B. M. Gramig, and L. S. Prokopy, 2017: Climate change beliefs, risk perceptions, and adaptation behavior among Midwestern U.S. crop farmers. Climate Risk Manage., 15, 817, https://doi.org/10.1016/j.crm.2016.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menapace, L., G. Colson, and R. Raffaelli, 2015: Climate change beliefs and perceptions of agricultural risks: An application of the exchangeability method. Global Environ. Change, 35, 7081, https://doi.org/10.1016/j.gloenvcha.2015.07.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morgan, M. G., B. Fischhoff, A. Bostrom, L. Lave, and C. Atman, 1992: Communicating risk to the public. First, learn what people know and believe. Environ. Sci. Technol., 26, 20482056, https://doi.org/10.1021/ES00035A606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morgan, M. G., B. Fischhoff, A. Bostrom, and C. J. Atman, 2002: Risk Communication: A Mental Models Approach. Cambridge University Press, 351 pp.

    • Crossref
    • Export Citation
  • Morris, D. A., and Coauthors, 2008: The National Severe Weather Workshop Scenario: Interactive adult learning for integrated warning team partners. 17th Symp. on Education, New Orleans, LA, Amer. Meteor. Soc., J3.6, https://ams.confex.com/ams/pdfpapers/131731.pdf.

  • Morss, R. E., J. L. Demuth, A. Bostrom, J. K. Lazo, and H. Lazrus, 2015: Flash flood risks and warning decisions: A mental models study of forecasters, public officials, and media broadcasters in Boulder, Colorado. Risk Anal., 35, 20092028, https://doi.org/10.1111/risa.12403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morss, R. E., K. J. Mulder, J. K. Lazo, and J. L. Demuth, 2016: How do people perceive, understand, and anticipate responding to flash flood risks and warnings? Results from a public survey in Boulder, Colorado, USA. J. Hydrol., 541, 649664, https://doi.org/10.1016/j.jhydrol.2015.11.047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagele, D. E., and J. E. Trainor, 2012: Geographic simplicity, tornadoes, and protective action. Wea. Climate Soc., 4, 145155, https://doi.org/10.1175/WCAS-D-11-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEI, 2009: State Climate Extremes Committee: Proposed standards for the collection, storage, and measurement of hailstones. NCEI Tech. Rep., 6 pp., https://ncdc.noaa.gov/monitoring-content/extremes/scec/reports/SCEC-Hail-Guide.pdf.

  • NWS, 2010: National implementation of the use of 1-inch diameter hail criterion for severe thunderstorm warnings in the NWS. NWS Tech. Doc., 2 pp., nws.weather.gov/products/PDD/OneInchHail_Oper_PDD.pdf.

  • NWS, 2018: Impact-based decision support services for NWS core partners. NWS Service Description Doc., 24 pp., https://www.weather.gov/media/im/IDSS_SDD_V1_0.pdf.

  • Ortega, K. L., J. M. Krause, and A. V. Ryzhkov, 2016: Polarimetric radar characteristics of melting hail. Part III: Validation of the algorithm for hail size discrimination. J. Appl. Meteor. Climatol., 55, 829848, https://doi.org/10.1175/JAMC-D-15-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otto-Banaszak, I., P. Matczak, J. Wesseler, and F. Wechsung, 2011: Different perceptions of adaptation to climate change: A mental model approach applied to the evidence from expert interviews. Reg. Environ. Change, 11, 217228, https://doi.org/10.1007/s10113-010-0144-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patton, M. Q., 2002: Qualitative Research and Evaluation Methods. 3rd ed. Sage, 688 pp.

  • Paudel, B., B. S. Acharya, R. Ghimire, K. R. Dahal, and P. Bista, 2014: Adapting agriculture to climate change and variability in Chitwan: Long-term trends and farmers’ perceptions. Agric. Res., 3, 165174, https://doi.org/10.1007/s40003-014-0103-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paul, B. K., 2011: Environmental Hazards: Contexts, Perspectives and Management. John Wiley and Sons, 334 pp.

    • Crossref
    • Export Citation
  • Prein, A. F., and G. J. Holland, 2018: Global estimates of damaging hail hazard. Wea. Climate Extremes, 22, 1023, https://doi.org/10.1016/j.wace.2018.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prokopy, L. S., J. G. Arbuckle, A. P. Barnes, V. R. Haden, A. Hogan, M. T. Niles, and J. Tyndall, 2015a: Farmers and climate change: A cross-national comparison of beliefs and risk perceptions in high-income countries. Environ. Manage., 56, 492504, https://doi.org/10.1007/s00267-015-0504-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prokopy, L. S., L. W. Morton, J. G. Arbuckle Jr., A. S. Mase, and A. K. Wilke, 2015b: Agricultural stakeholder views on climate change: Implications for conducting research and outreach. Bull. Amer. Meteor. Soc., 96, 181190, https://doi.org/10.1175/BAMS-D-13-00172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Púčik, T., C. Castellano, P. Groenemeijer, T. Kühne, A. T. Rädler, B. Antonescu, and E. Faust, 2019: Large hail incidence and its economic and societal impacts across Europe. Mon. Wea. Rev., 147, 39013916, https://doi.org/10.1175/MWR-D-19-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., A. F. Prein, R. M. Rasmussen, K. Ikeda, and C. Liu, 2020: Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States. Climate Dyn., 55, 383408, https://doi.org/10.1007/s00382-017-4000-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renn, O., 2008: Review of psychological, social and cultural factors of risk perception. Risk Governance: Coping with Uncertainty in a Complex World, O. Renn, Ed., Earthscan, 98–148.

  • Renn, O., and B. Rohrmann, Eds., 2000: Cross-Cultural Risk Perception. Vol. 13, A Survey of Empirical Studies, Springer, 242 pp.

    • Crossref
    • Export Citation
  • Ripberger, J. T., C. L. Silva, H. C. Jenkins-Smith, and M. James, 2015: The influence of consequence-based messages on public responses to tornado warnings. Bull. Amer. Meteor. Soc., 96, 577590, https://doi.org/10.1175/BAMS-D-13-00213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ripberger, J. T., C. L. Silva, H. C. Jenkins-Smith, J. Allan, M. Krocak, W. Wehde, and S. Ernst, 2020: Exploring community differences in Tornado warning reception, comprehension, and response across the United States. Bull. Amer. Meteor. Soc., 101, E936E948, https://doi.org/10.1175/BAMS-D-19-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rocky Mountain Insurance Information Agency, 2019: Hail. Accessed 5 June 2019, http://www.rmiia.org/catastrophes_and_statistics/Hail.asp.

  • Sánchez, J., R. Fraile, J. De La Madrid, M. De La Fuente, P. Rodríguez, and A. Castro, 1996: Crop damage: The hail size factor. J. Appl. Meteor., 35, 15351541, https://doi.org/10.1175/1520-0450(1996)035<1535:CDTHSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schattman, R. E., D. Conner, and V. E. Méndez, 2016: Farmer perceptions of climate change risk and associated on-farm management strategies in Vermont, northeastern United States. Elementa, 4, 000131, https://doi.org/10.12952/JOURNAL.ELEMENTA.000131.

    • Search Google Scholar
    • Export Citation
  • Shapiro, C. A., T. A. Peterson, and A. D. Flowerday, 1986: Yield loss due to simulated hail damage on corn: A comparison of actual and predicted values. Agron. J., 78, 585589, https://doi.org/10.2134/agronj1986.00021962007800040006x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherman-Morris, K., 2005: Tornadoes, television and trust—A closer look at the influence of the local weathercaster during severe weather. Global Environ. Change, 6B, 201210, https://doi.org/10.1016/J.HAZARDS.2006.10.002.

    • Search Google Scholar
    • Export Citation
  • Sherry, J., and A. Curtis, 2017: At the intersection of disaster risk and religion: Interpretations and responses to the threat of Tsho Rolpha glacial lake. Environ. Hazards, 16, 314329, https://doi.org/10.1080/17477891.2017.1298983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, G., A. Kumar, N. A. Pala, and S. Chakravarty, 2016: Farmers perception and awareness of climate change: A case study from Kanchandzonga Biosphere Reserve, India. Environ. Dev. Sustainability, 18, 11671176, https://doi.org/10.1007/s10668-015-9694-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slimak, M. W., and T. Dietz, 2006: Personal values, beliefs, and ecological risk perception. Risk Anal., 26, 16891705, https://doi.org/10.1111/j.1539-6924.2006.00832.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slovic, P., M. L. Fincuane, E. Peters, and D. G. MacGregor, 2004: Risk as analysis and risk as feelings: Some thoughts about affect, reason, risk, and rationality. Risk Anal., 24, 311322, https://doi.org/10.1111/j.0272-4332.2004.00433.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smit, B., and J. Wandel, 2006: Adaptation, adaptive capacity and vulnerability. Global Environ. Change, 16, 282292, https://doi.org/10.1016/j.gloenvcha.2006.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • State Farm, 2019: Hail happens: Stay safe during severe storms. Accessed 5 June 2019, https://newsroom.statefarm.com/top-10-states-for-hail-damage-claims-2019/.

  • Stensrud, D. J., and Coauthors, 2009: Convective-scale warn-on-forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871500, https://doi.org/10.1175/2009BAMS2795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terry, G., N. Hayfield, V. Clarke, and V. Braun, 2017: Thematic analysis. The Sage Handbook of Qualitative Research in Psychology, 2nd ed. C. Willig and S. Rogers, Eds., Sage, 17–37.

    • Crossref
    • Export Citation
  • Trapp, R. J., K. A. Hoogewind, and S. Lasher-Trapp, 2019: Future changes in hail occurrence in the United States determined through convection-permitting dynamical downscaling. J. Climate, 32, 54935509, https://doi.org/10.1175/JCLI-D-18-0740.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trumbo, C., 2013: Communicating the significance of risk. Communication and Engagement with Science: Issues and Dilemmas. J. K. Gilbert and S. M. Stocklmayer, Eds., Routledge, 91–109.

  • Turner, B. L., and Coauthors, 2003: A framework for vulnerability analysis in sustainability science. Proc. Natl. Acad. Sci. USA, 100, 80748079, https://doi.org/10.1073/pnas.1231335100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., and J. E. Ten Hoeve, 2019: Evolving the National Weather Service to build a weather-ready nation: Connecting observations, forecasts, and warnings to decision-makers through impact-based decision support services. Bull. Amer. Meteor. Soc., 100, 19231942, https://doi.org/10.1175/BAMS-D-18-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • USDA, 2018: State agriculture overview: Colorado. National Agricultural Statistics Service, nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=COLORADO.

  • Wagner, K., 2007: Mental models of flash floods and landslides. Risk Anal., 27, 671682, https://doi.org/10.1111/j.1539-6924.2007.00916.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walpole, H. D., and R. S. Wilson, 2020: Extending a broadly applicable measure of risk perception: The case for susceptibility. J. Risk Res., https://doi.org/10.1080/13669877.2020.1749874, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weyrich, P., Scolobig, A., Walther, F., and A. Patt, 2020: Responses to severe weather warnings and affective decision-making. Nat. Hazards Earth Syst. Sci., https://doi.org/10.5194/NHESS-2020-110, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wisner, B., J. C. Gaillard, and I. Kelman, 2012: Framing disaster: Theories and stories seeking to understand hazards, vulnerability and risk. Handbook of Hazards and Disaster Risk Reduction, Routledge, 47–62.

    • Crossref
    • Export Citation
  • Zaksek, M., and J. L. Arvai, 2004: Toward improved communication about wildland fire: Mental models research to identify information needs for natural resource management. Risk Anal., 24, 15031514, https://doi.org/10.1111/j.0272-4332.2004.00545.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zarafshani, K., L. Sharafi, H. Azadi, and S. Van Passel, 2016: Vulnerability assessment models to drought: Toward a conceptual framework. Sustainability, 8, 588, https://doi.org/10.3390/su8060588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Y., and A. Byg, 2014: Coping with climate change: Households’ response strategies to drought and hailstorm in Lijiang, China. Environ. Hazards, 13, 211228, https://doi.org/10.1080/17477891.2014.902799.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 183 183 0
Full Text Views 145 86 29
PDF Downloads 120 82 19

Agricultural Perspectives on Hailstorm Severity, Vulnerability, and Risk Messaging in Eastern Colorado

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 2 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Eastern Colorado is one of the most active hail regions in the United States, and individual hailstorms routinely surpass millions of dollars in crop loss and physical damage. Fifteen semistructured interviews with eastern Colorado farmers and ranchers were conducted in the summer of 2019 to gauge perceptions of the severity and vulnerability associated with hailstorms, as well as to understand how forecasts and warnings for severe hail are received and acted upon by the agricultural community. Results reveal a correspondence between perceived and observed frequency of hailstorms in eastern Colorado and highlight financial losses from crop destruction as the greatest threat from hailstorms. In contrast to the National Weather Service defining severe hail as at least 1.0 in. (25.4 mm) in diameter, the agricultural community conceptualizes hail severity according to impacts and damage. Small hail in large volumes or driven by a strong wind are the most worrisome scenarios for farmers, because small hail can most easily strip crop heads and stalks. Larger hailstones are perceived to pose less of a threat to crops but can produce significant damage to physical equipment and injure livestock. Eastern Colorado farmers and ranchers are avid weather watchers and associate environmental cues with hailstorms in addition to receiving warning messages, primarily via alerts on mobile telephones. Hailstorms elicit feelings of dejection and anxiety in some respondents, whereas others accept hailstorms as part of the job. Increasing awareness of the agricultural perceptions of hailstorms can help the meteorological community direct hail prediction research efforts and improve risk communication to the agricultural sector.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/WCAS-D-20-0015.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Samuel J. Childs, sjchilds@rams.colostate.edu

Abstract

Eastern Colorado is one of the most active hail regions in the United States, and individual hailstorms routinely surpass millions of dollars in crop loss and physical damage. Fifteen semistructured interviews with eastern Colorado farmers and ranchers were conducted in the summer of 2019 to gauge perceptions of the severity and vulnerability associated with hailstorms, as well as to understand how forecasts and warnings for severe hail are received and acted upon by the agricultural community. Results reveal a correspondence between perceived and observed frequency of hailstorms in eastern Colorado and highlight financial losses from crop destruction as the greatest threat from hailstorms. In contrast to the National Weather Service defining severe hail as at least 1.0 in. (25.4 mm) in diameter, the agricultural community conceptualizes hail severity according to impacts and damage. Small hail in large volumes or driven by a strong wind are the most worrisome scenarios for farmers, because small hail can most easily strip crop heads and stalks. Larger hailstones are perceived to pose less of a threat to crops but can produce significant damage to physical equipment and injure livestock. Eastern Colorado farmers and ranchers are avid weather watchers and associate environmental cues with hailstorms in addition to receiving warning messages, primarily via alerts on mobile telephones. Hailstorms elicit feelings of dejection and anxiety in some respondents, whereas others accept hailstorms as part of the job. Increasing awareness of the agricultural perceptions of hailstorms can help the meteorological community direct hail prediction research efforts and improve risk communication to the agricultural sector.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/WCAS-D-20-0015.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Samuel J. Childs, sjchilds@rams.colostate.edu

Supplementary Materials

    • Supplemental Materials (PDF 288 KB)
Save