• Auffhammer, M., and A. Aroonruengsawat, 2012: Hotspots of Climate-Driven Increases in Residential Electricity Demand: A Simulation Exercise Based on Household Level Billing Data for California. California Energy Commission, 39 pp.

  • Bai, C. E., C. T. Hsieh, and Z. Song, 2014: Crony capitalism with Chinese characteristics. University of Chicago Doc., 37 pp., https://cowles.yale.edu/sites/default/files/files/conf/2014/ma_song.pdf.

  • Bansal, R., and M. Ochoa, 2011: Welfare costs of long-run temperature shifts. NBER Working Paper 17574, 44 pp., http://www.nber.org/papers/w17574.

    • Crossref
    • Export Citation
  • Barreca, A., K. Clay, O. Deschenes, M. Greenstone, and J. S. Shapiro, 2016: Adapting to climate change: The remarkable decline in the US temperature–mortality relationship over the twentieth century. J. Political Econ., 124, 105159, https://doi.org/10.1086/684582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, M., S. M. Hsiang, and E. Miguel, 2015: Global non-linear effect of temperature on economic production. Nature, 527, 235239, https://doi.org/10.1038/nature15725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, M., W. M. Davis, and N. S. Diffenbaugh, 2018: Large potential reduction in economic damages under UN mitigation targets. Nature, 557, 549553, https://doi.org/10.1038/s41586-018-0071-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, Y. Y., K. L. Judd, T. M. Lenton, T. S. Lontzek, and D. Narita, 2015: Environmental tipping points significantly affect the cost-benefit assessment of climate policies. Proc. Natl. Acad. Sci. USA, 112, 46064611, https://doi.org/10.1073/pnas.1503890112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caminade, C., and Coauthors, 2014: Impact of climate change on global malaria distribution. Proc. Natl. Acad. Sci. USA, 111, 32863291, https://doi.org/10.1073/pnas.1302089111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carleton, T. A., and S. M. Hsiang, 2016: Social and economic impacts of climate. Science, 353, aad9837, https://doi.org/10.1126/science.aad9837.

  • Chen, S., X. Chen, and J. Xu, 2016: Impacts of climate change on agriculture: Evidence from China. J. Environ. Econ. Manage., 76, 105124, https://doi.org/10.1016/j.jeem.2015.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X. G., and L. Yang, 2019: Temperature and industrial output: Firm-level evidence from China. J. Environ. Econ. Manage., 95, 257274, https://doi.org/10.1016/j.jeem.2017.07.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colacito, R., B. Hoffmann, and T. Phan, 2019: Temperature and growth: A panel analysis of the United States. J. Money Credit Bank., 51, 313368, https://doi.org/10.1111/jmcb.12574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corringham, T. W., and D. R. Cayan, 2019: The effect of El Niño on flood damages in the western United States. Wea. Climate Soc., 11, 489504, https://doi.org/10.1175/WCAS-D-18-0071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, L. W., and P. J. Gertler, 2015: Contribution of air conditioning adoption to future energy use under global warming. Proc. Natl. Acad. Sci. USA, 112, 59625967, https://doi.org/10.1073/pnas.1423558112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dell, M., B. F. Jones, and B. A. Olken, 2012: Temperature shocks and economic growth: Evidence from the last half century. Amer. Econ. J., 4, 6695, https://doi.org/10.1257/mac.4.3.66.

    • Search Google Scholar
    • Export Citation
  • Dell, M., B. F. Jones, and B. A. Olken, 2014: What do we learn from the weather? The new climate-economy literature. J. Econ. Lit., 52, 740798, https://doi.org/10.1257/jel.52.3.740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, D., and F. Moore, 2017: Quantifying the economic risks of climate change. Nat. Climate Change, 7, 774782, https://doi.org/10.1038/nclimate3411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esplin, E. D., J. R. Marlon, A. Leiserowitz, and P. D. Howe, 2019: “Can you take the heat?” Heat-induced health symptoms are associated with protective behaviors. Wea. Climate Soc., 11, 401417, https://doi.org/10.1175/WCAS-D-18-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fezzi, C., and I. Bateman, 2015: The impact of climate change on agriculture: Nonlinear effects and aggregation bias in Ricardian models of farmland values. J. Assoc. Environ. Resour. Econ., 2, 5792, https://doi.org/10.1086/680257.

    • Search Google Scholar
    • Export Citation
  • Graff Zivin, J., and M. Neidell, 2014: Temperature and the allocation of time: Implications for climate change. J. Labor Econ., 32, 126, https://doi.org/10.1086/671766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallegatte, S., and Coauthors, 2016: Mapping the climate change challenge. Nat. Climate Change, 6, 663668, https://doi.org/10.1038/nclimate3057.

  • Hancock, P. A., J. M. Ross, and J. L. Szalma, 2007: A meta-analysis of performance response under thermal stressors. Hum. Factors, 49, 851877, https://doi.org/10.1518/001872007X230226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hochrainer-Stigler, S., R. Mechler, G. Pflug, and K. Williges, 2014: Funding public adaptation to climate-related disasters. Estimates for a global fund. Global Environ. Change, 25, 8796, https://doi.org/10.1016/j.gloenvcha.2014.01.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howarth, R. B., M. D. Gerst, and M. E. Borsuk, 2014: Risk mitigation and the social cost of carbon. Global Environ. Change, 24, 123131, https://doi.org/10.1016/j.gloenvcha.2013.11.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsiang, S. M., 2010: Temperatures and cyclones strongly associated with economic production in the Caribbean and Central America. Proc. Natl. Acad. Sci. USA, 107, 15 36715 372, https://doi.org/10.1073/pnas.1009510107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsiang, S. M., and Coauthors, 2017: Estimating economic damage from climate change in the United States. Science, 356, 13621369, https://doi.org/10.1126/science.aal4369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsieh, C. T., C. E. Bai, and Z. M. Song, 2019: Special deals with Chinese characteristics. Becker Friedman Institute for Economics Working Paper 2019-74, 50 pp., https://bfi.uchicago.edu/wp-content/uploads/BFI_WP_201974.pdf.

  • Huang, Y., 2008: Capitalism with Chinese Characteristics: Entrepreneurship and the State. Cambridge University Press, 366 pp.

    • Crossref
    • Export Citation
  • Krishnamurthy, P. K., K. Lewis, and R. J. Choularton, 2014: A methodological framework for rapidly assessing the impacts of climate risk on national-level food security through a vulnerability index. Global Environ. Change, 25, 121132, https://doi.org/10.1016/j.gloenvcha.2013.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemoine, D., and S. Kapnick, 2016: A top-down approach to projecting market impacts of climate change. Nat. Climate Change, 6, 5155, https://doi.org/10.1038/nclimate2759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lian, Y. Q., G. J. Y. You, K. R. Lin, Z. C. Jiang, C. Zhang, and X. Q. Qin, 2015: Characteristics of climate change in southwest China karst region and their potential environmental impacts. Environ. Earth Sci., 74, 937944, https://doi.org/10.1007/s12665-014-3847-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, Z., and Z. Ma, 2004: China’s floating population: New evidence from the 2000 census. Popul. Dev. Rev., 30, 467488, https://doi.org/10.1111/j.1728-4457.2004.00024.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, G. C. S., 2003: Regional development in China: States, globalization, and inequality. Environ. Plann., 35A, 947950, https://doi.org/10.1068/a3505rvw.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindner, M., and Coauthors, 2010: Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manage., 259, 698709, https://doi.org/10.1016/j.foreco.2009.09.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lise, W., and R. S. Tol, 2002: Impact of climate on tourist demand. Climatic Change, 55, 429449, https://doi.org/10.1023/A:1020728021446.

  • Moore, F. C., and D. B. Diaz, 2015: Temperature impacts on economic growth warrant stringent mitigation policy. Nat. Climate Change, 5, 127131, https://doi.org/10.1038/nclimate2481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neumayer, E., and F. Barthel, 2011: Normalizing economic loss from natural disasters: A global analysis. Global Environ. Change, 21, 1324, https://doi.org/10.1016/j.gloenvcha.2010.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nordhaus, W. D., and J. Boyer, 2000: Warming the World: Economic Models of Global Warming. MIT Press, 232 pp.

    • Crossref
    • Export Citation
  • O’Neill, B. C., E. Kriegler, K. Riahi, K. L. Ebi, S. Hallegatte, T. R. Carter, R. Mathur, and D. P. van Vuuren, 2014: A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Climatic Change, 122, 387400, https://doi.org/10.1007/s10584-013-0905-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, B. C., and Coauthors, 2017: The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environ. Change, 42, 169180, https://doi.org/10.1016/j.gloenvcha.2015.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pindyck, R. S., 2013: Climate change policy: What do the models tell us? J. Econ. Lit., 51, 860872, https://doi.org/10.1257/jel.51.3.860.

  • Ray, A., L. Hughes, D. M. Konisky, and C. Kaylor, 2017: Extreme weather exposure and support for climate change adaptation. Global Environ. Change, 46, 104113, https://doi.org/10.1016/j.gloenvcha.2017.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riahi, K., and Coauthors, 2017: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environ. Change, 42, 153168, https://doi.org/10.1016/j.gloenvcha.2016.05.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sartori, M., and R. Roson, 2016: Estimation of climate change damage functions for 140 regions in the GTAP9 database. J. Global Econ. Anal., 1, 78115, http://doi.org/10.21642/JGEA.010202AF.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlenker, W., and M. J. Roberts, 2009: Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl. Acad. Sci. USA, 106, 15 59415 598, https://doi.org/10.1073/pnas.0906865106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlenker, W., W. M. Hanemann, and A. C. Fisher, 2005: Will US agriculture really benefit from global warming? Accounting for irrigation in the hedonic approach. Amer. Econ. Rev., 95, 395406, https://doi.org/10.1257/0002828053828455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, A., and D. D. White, 2019: An assessment of public perceptions of climate change risk in three western US cities. Wea. Climate Soc., 11, 449463, https://doi.org/10.1175/WCAS-D-18-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Vuuren, D. P., and Coauthors, 2011: The use of scenarios as the basis for combined assessment of climate change mitigation and adaptation. Global Environ. Change, 21, 575591, https://doi.org/10.1016/j.gloenvcha.2010.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, Y.-M., and Coauthors, 2018: An integrated assessment of INDCs under shared socioeconomic pathways: An implementation of C3IAM. Nat. Hazards, 92, 585618, https://doi.org/10.1007/s11069-018-3297-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, Y.-M., B.-Y. Yu, H. Li, J.-N. Kang, J.-W. Wang, and W.-M. Chen, 2019: Climate engineering management: An emerging interdisciplinary subject. J. Modell. Manage., 15, 685702, https://doi.org/10.1108/JM2-09-2019-0219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, Y.-M., and Coauthors, 2020: Self-preservation strategy for approaching global warming targets in the post-Paris Agreement era. Nat. Commun., 11, 1624, https://doi.org/10.1038/s41467-020-15453-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wooten, R. D., 2011: Statistical analysis of the relationship between wind speed, pressure and temperature. J. Appl. Sci., 11, 27122722, https://doi.org/10.3923/jas.2011.2712.2722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y. Z., J. L. Niu, R. Y. Zhao, and J. Burnett, 2000: Effects of turbulent air on human thermal sensations in a warm isothermal environment. Indoor Air, 10, 289296, https://doi.org/10.1034/j.1600-0668.2000.010004289.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X.-C., X. Sun, U. Lall, Z.-F. Mi, J. He, and Y.-M. Wei, 2016: China’s socioeconomic risk from extreme events in a changing climate: A hierarchical bayesian model. Climatic Change, 139, 169181, https://doi.org/10.1007/s10584-016-1749-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zander, K. K., S. Moss, and S. T. Garnett, 2019: Climate change–related heat stress and subjective well-being in Australia. Wea. Climate Soc., 11, 505520, https://doi.org/10.1175/WCAS-D-18-0074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, P., J. Zhang, and M. Chen, 2017: Economic impacts of climate change on agriculture: The importance of additional climatic variables other than temperature and precipitation. J. Environ. Econ. Manage., 83, 831, https://doi.org/10.1016/j.jeem.2016.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, P., O. Deschenes, K. Meng, and J. Zhang, 2018: Temperature effects on productivity and factor reallocation: Evidence from a half million Chinese manufacturing plants. J. Environ. Econ. Manage., 88, 117, https://doi.org/10.1016/j.jeem.2017.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 134 118 18
Full Text Views 20 16 3
PDF Downloads 21 20 3

The Nonlinear Impacts of Global Warming on Regional Economic Production: An Empirical Analysis from China

View More View Less
  • 1 Center for Energy and Environmental Policy Research, and School of Management and Economics, Beijing Institute of Technology, and Beijing Key Laboratory of Energy Economics and Environmental Management, Beijing, China
  • 2 Center for Energy and Environmental Policy Research, and School of Management and Economics, Beijing Institute of Technology, and Beijing Key Laboratory of Energy Economics and Environmental Management, and Sustainable Development Research Institute for Economy and Society of Beijing, Beijing, China
© Get Permissions
Restricted access

Abstract

China, the second largest economy in the world, covers a large area spanning multiple climate zones, with varying economic conditions across regions. Given this variety in climate and economic conditions, global warming is expected to have heterogeneous economic impacts across the country. This study uses annual average temperature to conduct an empirical research from a top-down perspective to evaluate the nonlinear impacts of temperature change on aggregate economic output in China. We find that there is an inverted U-shaped relationship between temperature and economic growth at the provincial level, with a turning point at 12.2°C. The regional and national economic impacts are projected under the shared socioeconomic pathways (SSPs) and representative concentration pathways (RCPs). As future temperature rises, the economic impacts are positive in the northeast, north, and northwest regions but negative in the south, east, central, and southwest regions. Based on SSP5, the decrement in the GDP per capita of China would reach 16.0% under RCP2.6 and 27.0% under RCP8.5.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/WCAS-D-20-0029.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiao-Chen Yuan, yuanxc@bit.edu.cn; xc.yuan@outlook.com

Abstract

China, the second largest economy in the world, covers a large area spanning multiple climate zones, with varying economic conditions across regions. Given this variety in climate and economic conditions, global warming is expected to have heterogeneous economic impacts across the country. This study uses annual average temperature to conduct an empirical research from a top-down perspective to evaluate the nonlinear impacts of temperature change on aggregate economic output in China. We find that there is an inverted U-shaped relationship between temperature and economic growth at the provincial level, with a turning point at 12.2°C. The regional and national economic impacts are projected under the shared socioeconomic pathways (SSPs) and representative concentration pathways (RCPs). As future temperature rises, the economic impacts are positive in the northeast, north, and northwest regions but negative in the south, east, central, and southwest regions. Based on SSP5, the decrement in the GDP per capita of China would reach 16.0% under RCP2.6 and 27.0% under RCP8.5.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/WCAS-D-20-0029.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiao-Chen Yuan, yuanxc@bit.edu.cn; xc.yuan@outlook.com

Supplementary Materials

    • Supplemental Materials (PDF 1.49 MB)
Save