• Andra, D. L., Jr., E. M. Quoetone, and W. F. Bunting, 2002: Warning decision making: The relative roles of conceptual models, technology, strategy, and forecaster expertise on 3 May 1999. Wea. Forecasting, 17, 559566, https://doi.org/10.1175/1520-0434(2002)017<0559:WDMTRR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., 2007: Spatial and temporal analysis of tornado fatalities in the United States: 1880–2005. Wea. Forecasting, 22, 12141228, https://doi.org/10.1175/2007WAF2007004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., and A. W. Black, 2008: Fatalities associated with nonconvective high-wind events in the United States. J. Appl. Meteor. Climatol., 47, 717725, https://doi.org/10.1175/2007JAMC1689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, A. W., and W. S. Ashley, 2010: Nontornadic convective wind fatalities in the United States. Nat. Hazards, 54, 355366, https://doi.org/10.1007/s11069-009-9472-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, A. W., and W. S. Ashley, 2011: The relationship between tornadic and nontornadic convective wind fatalities and warnings. Wea. Climate Soc., 3, 3147, https://doi.org/10.1175/2010WCAS1094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., and J. Correia Jr., 2018: Long-term performance metrics for National Weather Service tornado warnings. Wea. Forecasting, 33, 15011511, https://doi.org/10.1175/WAF-D-18-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., and L. R. Lemon, 1990: Severe thunderstorm detection by radar. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 619647.

    • Crossref
    • Export Citation
  • Cho, J. Y. N., 2015: Revised Multifunction Phased Array Radar (MPAR) network siting analysis. MIT Lincoln Laboratory Project Rep. ATC-425, 84 pp., https://www.ll.mit.edu/sites/default/files/publication/doc/2018-05/Cho_2015_ATC-425.pdf.

  • Cho, J. Y. N., and M. E. Weber, 2010: Terminal Doppler weather radar enhancements. 2010 IEEE Radar Conf., Washington, DC, IEEE, 12451249, https://doi.org/10.1109/RADAR.2010.5494427.

    • Crossref
    • Export Citation
  • Cho, J. Y. N., and J. M. Kurdzo, 2019a: Monetized weather radar network benefits for tornado cost reduction. MIT Lincoln Laboratory Project Rep. NOAA-35, 88 pp., https://www.ll.mit.edu/sites/default/files/publication/doc/monetized-weather-radar-network-benefits-cho-noaa-35.pdf.

  • Cho, J. Y. N., and J. M. Kurdzo, 2019b: Weather radar network benefit model for tornadoes. J. Appl. Meteor. Climatol., 58, 971987, https://doi.org/10.1175/JAMC-D-18-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., and J. M. Kurdzo, 2020: Weather radar network benefit model for flash flood casualty reduction. J. Appl. Meteor. Climatol., 59, 589604, https://doi.org/10.1175/JAMC-D-19-0176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chrisman, J. N., 2013: Dynamic scanning. NEXRAD Now, No. 22, NOAA/NWS/Radar Operations Center, Norman, OK, 13, https://www.roc.noaa.gov/WSR88D/PublicDocs/NNOW/NNow22c.pdf.

  • Chrisman, J. N., 2014: The continuing evolution of dynamic scanning. NEXRAD Now, No. 23, NOAA/NWS/Radar Operations Center, Norman, OK, 813, http://www.roc.noaa.gov/WSR88D/PublicDocs/NNOW/NNow23a.pdf.

  • Chrisman, J. N., 2016: Mid-volume RESCAN of low-level elevations (MRLE): A new approach to enhance sampling of quasi-linear convective systems (QLCSs). NOAA/NWS/Radar Operations Center New Radar Technologies Doc., 21 pp., https://www.roc.noaa.gov/WSR88D/PublicDocs/NewTechnology/DQ_QLCS_MRLE_June_2016.pdf.

  • CIESIN, 2017: Gridded Population of the World, ver. 4 (GPWv4): Population density, rev. 10. NASA Socioeconomic Data and Applications Center, Center for International Earth Science Information Network, Columbia University, accessed 20 September 2017, https://doi.org/10.7927/H4DZ068D.

    • Crossref
    • Export Citation
  • Crum, T. D., and R. L. Alberty, 1993: The WSR-88D and the WSR-88D Operational Support Facility. Bull. Amer. Meteor. Soc., 74, 16691688, https://doi.org/10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeKay, M. L., and D. H. McClelland, 1993: Predicting loss of life in cases of dam failure and flash flood. Risk Anal., 13, 193205, https://doi.org/10.1111/j.1539-6924.1993.tb01069.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and M. P. Kay, 2005: Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. Wea. Forecasting, 20, 577595, https://doi.org/10.1175/WAF866.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DOT, 2016: Guidance on treatment of the economic value of a statistical life (VSL) in U.S. Department of Transportation Analyses—2016 adjustment. U.S. Department of Transportation Memorandum to Secretarial Officers and Modal 71 Administrators, 13 pp., https://cms.dot.gov/sites/dot.gov/files/docs/2016%20Revised%20Value%20of%20a%20Statistical% 20Life%20Guidance.pdf.

  • FEMA, 2009: FEMA benefit-cost analysis reengineering (BCAR), version 4.5. Department of Homeland Security Doc., 75 pp., https://www.fema.gov/media-library-data/20130726-1738-25045-0690/tornadomethodology.pdf.

  • Fultz, A. J., and W. S. Ashley, 2016: Fatal weather-related general aviation accidents in the United States. Phys. Geogr., 37, 291312, https://doi.org/10.1080/02723646.2016.1211854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldman, A., B. Eggen, B. Golding, and V. Murray, 2014: The health impacts of windstorms: A systematic literature review. Public Health, 128, 328, https://doi.org/10.1016/j.puhe.2013.09.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallowell, R. G., and J. Y. N. Cho, 2010: Wind-shear system cost-benefit analysis. Linc. Lab. J., 18, 4768.

  • Harrison, D. R., and C. D. Karstens, 2017: A climatology of operational storm-based warnings: A geospatial analysis. Wea. Forecasting, 32, 4760, https://doi.org/10.1175/WAF-D-15-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., and S. M. Torres, 2011: High-temporal-resolution capabilities of the National Weather Radar Testbed Phased-Array Radar. J. Appl. Meteor. Climatol., 50, 579593, https://doi.org/10.1175/2010JAMC2588.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., D. L. Priegnitz, K. L. Manross, T. M. Smith, and R. W. Adams, 2008: Rapid sampling of severe storms by the National Weather Radar Testbed Phased Array Radar. Wea. Forecasting, 23, 808824, https://doi.org/10.1175/2008WAF2007071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hondl, K., and M. Weber, 2019: NOAA’s meteorological phased array radar research program. 2019 IEEE Int. Symp. on Phased Array System and Technology (PAST), Waltham, MA, IEEE, 16, https://doi.org/10.1109/PAST43306.2019.9020994.

    • Crossref
    • Export Citation
  • Istok, M. J., A. Cheek, A. D. Stern, R. E. Saffle, B. R. Klein, N. Shen, and W. M. Blanchard, 2009a: Leveraging multiple FAA radars for NWS operations. 25th Int. Conf. on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology, Phoenix, AZ, Amer. Meteor. Soc., 10B.2, https://ams.confex.com/ams/pdfpapers/145466.pdf.

  • Istok, M. J., and et al. , 2009b: WSR-88D dual polarization initial operational capabilities. 25th Int. Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Phoenix, AZ, Amer. Meteor. Soc., 15.5, https://ams.confex.com/ams/pdfpapers/148927.pdf.

  • Kelly, D. L., J. T. Schaefer, and C. A. Doswell III, 1985: Climatology of nontornadic severe thunderstorm events in the United States. Mon. Wea. Rev., 113, 19972014, https://doi.org/10.1175/1520-0493(1985)113<1997:CONSTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurdzo, J. M., and J. Y. N. Cho, 2020: National Weather Service TDWR surveys for tornado and severe thunderstorm warning guidance. MIT Lincoln Laboratory Project Memo. 43PM-Wx-0191, 17 pp.

  • Kurdzo, J. M., and et al. , 2017: Observations of severe local storms and tornadoes with the atmospheric imaging radar. Bull. Amer. Meteor. Soc., 98, 915935, https://doi.org/10.1175/BAMS-D-15-00266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuster, C. M., J. C. Snyder, T. J. Schuur, T. T. Lindley, P. L. Heinselman, J. C. Furtado, J. W. Brogden, and R. Toomey, 2019: Rapid-update radar observations of ZDR column depth and its use in the warning decision process. Wea. Forecasting, 34, 11731188, https://doi.org/10.1175/WAF-D-19-0024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeClerc, J., and S. Joslyn, 2015: The cry wolf effect and weather-related decision making. Risk Anal., 35, 385395, https://doi.org/10.1111/risa.12336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., R. J. Donaldson Jr., D. W. Burgess, and R. A. Brown, 1977: Doppler radar application to severe thunderstorm study and potential real-time warning. Bull. Amer. Meteor. Soc., 58, 11871193, https://doi.org/10.1175/1520-0477(1977)058<1187:DRATST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NWS, 2009: Verification procedures. National Weather Service Operations and Services Doc. NWSI 10-1610, 83 pp., http://www.nws.noaa.gov/directives/010/archive/pd01016001d.pdf.

  • Pifer, B., and H. M. Mogil, 1978: NWS hazardous weather terminology. Bull. Amer. Meteor. Soc., 59, 15831588, https://doi.org/10.1175/1520-0477(1978)059<1583:NHWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polger, P. D., B. S. Goldsmith, R. C. Przywarty, and J. S. Bocchieri, 1994: National Weather Service warning performance based on the WSR-88D. Bull. Amer. Meteor. Soc., 75, 203214, https://doi.org/10.1175/1520-0477(1994)075<0203:NWSWPB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992: Numerical Recipes in C: The Art of Scientific Computing.2nd ed. Cambridge University Press,994 pp.

    • Search Google Scholar
    • Export Citation
  • Roberts, R. D., and J. W. Wilson, 1989: A proposed microburst nowcasting procedure using single-Doppler radar. J. Appl. Meteor., 28, 285303, https://doi.org/10.1175/1520-0450(1989)028<0285:APMNPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, M. E., K. D. Ash, and J. M. Collins, 2018: Usefulness of the United States National Weather Service radar display as rated by website users. Wea. Climate Soc., 10, 673691, https://doi.org/10.1175/WCAS-D-17-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidlin, T. W., 2009: Human fatalities from wind-related tree failures in the United States, 1995–2007. Nat. Hazards, 50, 1325, https://doi.org/10.1007/s11069-008-9314-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., A. V. Ryzhkov, P. L. Heinselman, D. W. Burgess, and K. A. Scharfenberg, 2004: The joint polarization experiment—A summary of dual-polarization WSR-88D radar data collection and analysis. 20th Int. Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Seattle, WA, Amer. Meteor. Soc., 12.1, https://ams.confex.com/ams/pdfpapers/70797.pdf.

  • Simmons, K. M., and D. Sutter, 2008: Tornado warnings, lead times, and tornado casualties: An empirical investigation. Wea. Forecasting, 23, 246258, https://doi.org/10.1175/2007WAF2006027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, K. M., and D. Sutter, 2011: Economic and Societal Impact of Tornadoes. Amer. Meteor. Soc., 282 pp.

  • Smith, S. B., 2011: The impact of NWS Weather Forecast Office culture on tornado warning performance. NOAA Office of Science and Technology Seminar, Silver Spring, MD, NWS Meteorological Development Laboratory, https://www.nws.noaa.gov/mdl/seminar/Presentations/November_30_2011.pdf.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and et al. , 2009: Convective-scale warn-on-forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871500, https://doi.org/10.1175/2009BAMS2795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., D. M. Wheatley, N. T. Atkins, R. W. Przybylinski, and R. Wolf, 2006: Buyer beware: Some words of caution on the use of severe wind reports in postevent assessment and research. Wea. Forecasting, 21, 408415, https://doi.org/10.1175/WAF925.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, M. E., J. Y. N. Cho, J. S. Herd, J. M. Flavin, W. E. Benner, and G. S. Torok, 2007: The next-generation multimission U.S. surveillance radar network. Bull. Amer. Meteor. Soc., 88, 17391752, https://doi.org/10.1175/BAMS-88-11-1739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, M. E., J. Y. N. Cho, and H. G. Thomas, 2017: Command and control for multifunction phased array radar. IEEE Trans. Geosci. Remote Sens., 55, 58995912, https://doi.org/10.1109/TGRS.2017.2716935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, K. A., P. L. Heinselman, C. M. Custer, D. M. Kingfield, and Z. Kang, 2017: Forecaster performance and workload: Does radar update time matter? Wea. Forecasting, 32, 253274, https://doi.org/10.1175/WAF-D-16-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, E. D. Mitchell, J. T. Johnson, and K. W. Thomas, 1998: Evaluating the performance of WSR-88D severe storm detection algorithms. Wea. Forecasting, 13, 513518, https://doi.org/10.1175/1520-0434(1998)013<0513:ETPOWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 131 131 2
Full Text Views 69 69 2
PDF Downloads 78 78 4

Weather Radar Network Benefit Model for Nontornadic Thunderstorm Wind Casualty Cost Reduction

View More View Less
  • 1 Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

An econometric geospatial benefit model for nontornadic thunderstorm wind casualty reduction is developed for meteorological radar network planning. Regression analyses on 22 years (1998–2019) of storm event and warning data show, likely for the first time, a clear dependence of nontornadic severe thunderstorm warning performance on radar coverage. Furthermore, nontornadic thunderstorm wind casualty rates are observed to be negatively correlated with better warning performance. In combination, these statistical relationships form the basis of a cost model that can be differenced between radar network configurations to generate geospatial benefit density maps. This model, applied to the current contiguous U.S. weather radar network, yields a benefit estimate of $207 million (M) yr−1 relative to no radar coverage at all. The remaining benefit pool with respect to enhanced radar coverage and scan update rate is about $36M yr−1. Aggregating these nontornadic thunderstorm wind results with estimates from earlier tornado and flash flood cost reduction models yields a total benefit of $1.12 billion yr−1 for the present-day radars and a remaining radar-based benefit pool of $778M yr−1.

ORCID: 0000-0002-5409-3674.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John Y. N. Cho, jync@ll.mit.edu

Abstract

An econometric geospatial benefit model for nontornadic thunderstorm wind casualty reduction is developed for meteorological radar network planning. Regression analyses on 22 years (1998–2019) of storm event and warning data show, likely for the first time, a clear dependence of nontornadic severe thunderstorm warning performance on radar coverage. Furthermore, nontornadic thunderstorm wind casualty rates are observed to be negatively correlated with better warning performance. In combination, these statistical relationships form the basis of a cost model that can be differenced between radar network configurations to generate geospatial benefit density maps. This model, applied to the current contiguous U.S. weather radar network, yields a benefit estimate of $207 million (M) yr−1 relative to no radar coverage at all. The remaining benefit pool with respect to enhanced radar coverage and scan update rate is about $36M yr−1. Aggregating these nontornadic thunderstorm wind results with estimates from earlier tornado and flash flood cost reduction models yields a total benefit of $1.12 billion yr−1 for the present-day radars and a remaining radar-based benefit pool of $778M yr−1.

ORCID: 0000-0002-5409-3674.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John Y. N. Cho, jync@ll.mit.edu
Save