• Agarwal, P., and A. Skupin, 2008: Self-Organizing Maps: Applications in Geographic Information Science. John Wiley and Sons, 214 pp.

  • Andrienko, G., N. Andrienko, S. Bremm, T. Schreck, T. Von Landesberger, P. Bak, and D. Keim, 2010: Space-in-time and time-in-space self-organizing maps for exploring spatiotemporal patterns. Comput. Graph. Forum, 29, 913922, https://doi.org/10.1111/j.1467-8659.2009.01664.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, A. P., and L. Toma, 2012: A typology of dairy farmer perceptions towards climate change. Climatic Change, 112, 507522, https://doi.org/10.1007/s10584-011-0226-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bashir, M. F., B. M. Bilal, B. Komal, M. A. Bashir, D. Tan, and M. Bashir, 2020: Correlation between climate indicators and COVID-19 pandemic in New York, USA. Sci. Total Environ., 728, 138835, https://doi.org/10.1016/j.scitotenv.2020.138835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boykoff, M. T., 2013: Public Enemy No. 1?: Understanding media representations of outlier views on climate change. Amer. Behav. Sci., 57, 796817, https://doi.org/10.1177/0002764213476846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brügger, A., S. Dessai, P. Devine-Wright, T. A. Morton, and N. F. Pidgeon, 2015: Psychological responses to the proximity of climate change. Nat. Climate Change, 5, 10311037, https://doi.org/10.1038/nclimate2760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budayan, C., I. Dikmen, and M. T. Birgonul, 2009: Comparing the performance of traditional cluster analysis, self-organizing maps and fuzzy C-means method for strategic grouping. Expert Syst. Appl., 36, 11 77211 781, https://doi.org/10.1016/j.eswa.2009.04.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capstick, S., L. Whitmarsh, W. Poortinga, N. Pidgeon, and P. Upham, 2015: International trends in public perceptions of climate change over the past quarter century. Wiley Interdiscip. Rev.: Climate Change, 6, 3561, https://doi.org/10.1002/wcc.321.

    • Search Google Scholar
    • Export Citation
  • Carmichael, J. T., R. J. Brulle, and J. K. Huxster, 2017: The great divide: Understanding the role of media and other drivers of the partisan divide in public concern over climate change in the USA, 2001–2014. Climatic Change, 141, 599612, https://doi.org/10.1007/s10584-017-1908-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chryst, B., J. Marlon, S. van der Linden, A. Leiserowitz, E. Maibach, and C. Roser-Renouf, 2018: Global warming’s “Six Americas Short Survey”: Audience segmentation of climate change views using a four question instrument. Environ. Commun., 12, 11091122, https://doi.org/10.1080/17524032.2018.1508047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crampton, J. W., 2002: Interactivity types in geographic visualization. Cartogr. Geogr. Inf. Sci., 29, 8598, https://doi.org/10.1559/152304002782053314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delmelle, E. C., J. C. Thill, O. Furuseth, and T. Ludden, 2013: Trajectories of multidimensional neighbourhood quality of life change. Urban Stud., 50, 923941, https://doi.org/10.1177/0042098012458003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Detenber, B. H., S. Rosenthal, Y. Liao, and S. S. Ho, 2016: Audience segmentation for campaign design: Addressing climate change in Singapore. Int. J. Commun., 10, 47364758.

    • Search Google Scholar
    • Export Citation
  • Dunlap, R. E., 2013: Climate change skepticism and denial: An introduction. Amer. Behav. Sci., 57, 691698, https://doi.org/10.1177/0002764213477097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunlap, R. E., and A. M. McCright, 2011: Organized climate change denial. The Oxford Handbook of Climate Change and Society, J. S. Dryzek, R. B. Norgaard, and D. Schlosberg, Eds., Oxford University Press, 144160.

  • Feldman, L., E. W. Maibach, C. Roser-Renouf, and A. Leiserowitz, 2012: Climate on cable: The nature and impact of global warming coverage on Fox News, CNN, and MSNBC. Int. J. Press., 17, 331, https://doi.org/10.1177/1940161211425410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, L., P. S. Hart, and T. Milosevic, 2017: Polarizing news? Representations of threat and efficacy in leading US newspapers’ coverage of climate change. Public Understanding Sci., 26, 481497, https://doi.org/10.1177/0963662515595348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fielding, K. S., and M. J. Hornsey, 2016: A social identity analysis of climate change and environmental attitudes and behaviors: Insights and opportunities. Front. Psychol., 7, 112, https://doi.org/10.3389/fpsyg.2016.00121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, P., Z. Li, and Z. Qin, 2019: Usability of value-by-alpha maps compared to area cartograms and proportional symbol maps. J. Spat. Sci., 64, 239255, https://doi.org/10.1080/14498596.2018.1440649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, P. B., P. Uotila, S. E. Perkins-Kirkpatrick, L. V. Alexander, and A. J. Pitman, 2016: Evaluating synoptic systems in the CMIP5 climate models over the Australian region. Climate Dyn., 47, 22352251, https://doi.org/10.1007/s00382-015-2961-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldberg, M., A. Gustafson, S. Rosenthal, J. Kotcher, E. Maibach, and A. Leiserowitz, 2020: For the first time, the alarmed are now the largest of global warming’s six Americas. Yale Program on Climate Change Communication, https://climatecommunication.yale.edu/publications/for-the-first-time-the-alarmed-are-now-the-largest-of-global-warmings-six-americas/.

  • Hagenauer, J., and M. Helbich, 2013: Hierarchical self-organizing maps for clustering spatiotemporal data. Int. J. Geogr. Inf. Sci., 27, 20262042, https://doi.org/10.1080/13658816.2013.788249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, L. C., and B. Keim, 2009: Regional variation in perceptions about climate change. Int. J. Climatol., 29, 23482352, https://doi.org/10.1002/joc.1930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, L. C., C. P. Wake, J. Hartter, T. G. Safford, and A. J. Puchlopek, 2016: Flood realities, perceptions and the depth of divisions on climate. Sociology, 50, 913933, https://doi.org/10.1177/0038038516648547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrower, M., and C. A. Brewer, 2003: ColorBrewer.org: An online tool for selecting colour schemes for maps. Cartogr. J., 40, 2737, https://doi.org/10.1179/000870403235002042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, P. S., and E. C. Nisbet, 2012: Boomerang effects in science communication: How motivated reasoning and identity cues amplify opinion polarization about climate mitigation policies. Commun. Res., 39, 701723, https://doi.org/10.1177/0093650211416646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hepburn, C., B. O’Callaghan, N. Stern, J. Stiglitz, and D. Zenghelis, 2020: Will COVID-19 fiscal recovery packages accelerate or retard progress on climate change? Smith School Working Paper 20-02, 48 pp., https://www.smithschool.ox.ac.uk/publications/wpapers/workingpaper20-02.pdf.

  • Hine, D. W., J. P. Reser, M. Morrison, W. J. Phillips, P. Nunn, and R. Cooksey, 2014: Audience segmentation and climate change communication: Conceptual and methodological considerations. Wiley Interdiscip. Rev.: Climate Change, 5, 441459, https://doi.org/10.1002/wcc.279.

    • Search Google Scholar
    • Export Citation
  • Howe, P. D., and A. Leiserowitz, 2013: Who remembers a hot summer or a cold winter? The asymmetric effect of beliefs about global warming on perceptions of local climate conditions in the U.S. Global Environ. Change, 23, 14881500, https://doi.org/10.1016/j.gloenvcha.2013.09.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howe, P. D., M. Mildenberger, J. R. Marlon, and A. Leiserowitz, 2015: Geographic variation in opinions on climate change at state and local scales in the USA. Nat. Climate Change, 5, 596603, https://doi.org/10.1038/nclimate2583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hulme, M., 2009: Why We Disagree about Climate Change: Understanding Controversy, Inaction and Opportunity. Cambridge University Press, 432 pp.

  • Hulme, M., 2019: Climate emergency politics is dangerous. Issues Sci. Technol., 36, 2325, https://doi.org/10.17863/CAM.46233.

  • Hulme, M., 2020: Is it too late (to stop dangerous climate change)? An editorial. Wiley Interdiscip. Rev.: Climate Change, 11, e619, https://doi.org/10.1002/wcc.619.

    • Search Google Scholar
    • Export Citation
  • Janetzko, H., D. Jäckle, and T. Schreck, 2013: Comparative visual analysis of large customer feedback based on self-organizing sentiment maps. Proc. Third Int. Conf. on Advances in Information Mining and Management, Lisbon, Portugal, IARIA, 1217.

  • Jones, M. D., and G. Song, 2014: Making sense of climate change: How story frames shape cognition. Polit. Psychol., 35, 447476, https://doi.org/10.1111/pops.12057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joslyn, S., and R. Demnitz, 2019: Communicating climate change: Probabilistic expressions and concrete events. Wea. Climate Soc., 11, 651664, https://doi.org/10.1175/WCAS-D-18-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahan, D., 2012: Why we are poles apart on climate change. Nature, 488, 255, https://doi.org/10.1038/488255a.

  • Kahan, D., 2015: Climate-science communication and the measurement problem. Polit. Psychol., 36, 143, https://doi.org/10.1111/pops.12244.

  • Kaufman, L., and P. J. Rousseeuw, 1990: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley and Sons, 342 pp.

    • Crossref
    • Export Citation
  • Kohonen, T., 1995: Self-Organizing Maps. Springer, 392 pp.

  • Koua, E. L., 2003: Using self-organizing maps for information visualization and knowledge discovery in complex geospatial datasets. Proc. 21st Int. Cartographic Conf., Durban, South Africa, International Cartographic Association, 16941702.

  • Koua, E. L., and M.-J. Kraak, 2004: Alternative visualization of large geospatial datasets. Cartogr. J., 41, 217228, https://doi.org/10.1179/000870404X13283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koua, E. L., A. Maceachren, and M.-J. Kraak, 2006: Evaluating the usability of visualization methods in an exploratory geovisualization environment. Int. J. Geogr. Inf. Sci., 20, 425448, https://doi.org/10.1080/13658810600607550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T. M., E. M. Markowitz, P. D. Howe, C. Y. Ko, and A. A. Leiserowitz, 2015: Predictors of public climate change awareness and risk perception around the world. Nat. Climate Change, 5, 10141020, https://doi.org/10.1038/nclimate2728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leiserowitz, A., and K. Akerlof, 2010: Race, ethnicity and public responses to climate change. Yale Project on Climate Change and the George Mason University Center for Climate Change Communication Rep., 70 pp., https://climatecommunication.yale.edu/publications/race-ethnicity-and-public-responses-to-climate-change/.

  • Leiserowitz, A., E. Maibach, and C. Roser-Renouf, 2009: Global warming’s six Americas: An audience segmentation analysis. Yale Project on Climate Change and the George Mason University Center for Climate Change Communication, https://climatecommunication.yale.edu/about/projects/global-warmings-six-americas/.

  • Leiserowitz, A., E. Maibach, C. Roser-Renouf, N. Smith, and E. Dawson, 2013: Climategate, public opinion, and the loss of trust. Amer. Behav. Sci., 57, 818837, https://doi.org/10.1177/0002764212458272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leiserowitz, A., E. Maibach, C. Roser-Renouf, M. Cutle, and S. Rosenthal, 2017: Trump voters & global warming. Yale Project on Climate Change and the George Mason University Center for Climate Change Communication Rep., 16 pp., http://climatecommunication.yale.edu/publications/trump-voters-global-warming/.

  • Lin, C., H. Chen, and J. F. Nunamaker, 1999: Verifying the proximity and size hypothesis for self-organizing maps. J. Manage. Inf. Syst., 16, 5770, https://doi.org/10.1080/07421222.1999.11518256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyons, B. A., A. Hasell, and N. J. Stroud, 2018: Enduring extremes? Polar vortex, drought, and climate change beliefs. Environ. Commun., 12, 876894, https://doi.org/10.1080/17524032.2018.1520735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maibach, E. W., A. Leiserowitz, C. Roser-Renouf, and C. K. Mertz, 2011: Identifying like-minded audiences for global warming public engagement campaigns: An audience segmentation analysis and tool development. PLOS ONE, 6, e17571, https://doi.org/10.1371/journal.pone.0017571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquart-Pyatt, S. T., R. L. Shwom, T. Dietez, R. E. Dunlap, S. A. Kaplowitz, A. M. McCright, and S. Zahran, 2011: Understanding public opinion on climate change: A call for research. Environ. Sci. Policy Sustainable Dev., 53, 3842, https://doi.org/10.1080/00139157.2011.588555.

    • Search Google Scholar
    • Export Citation
  • Marquart-Pyatt, S. T., A. M. McCright, T. Dietz, and R. E. Dunlap, 2014: Politics eclipses climate extremes for climate change perceptions. Global Environ. Change, 29, 246257, https://doi.org/10.1016/j.gloenvcha.2014.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCright, A. M., and R. E. Dunlap, 2011: Cool dudes: The denial of climate change among conservative white males in the United States. Global Environ. Change, 21, 11631172, https://doi.org/10.1016/j.gloenvcha.2011.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCright, A. M., M. Charters, K. Dentzman, and T. Dietz, 2016: Examining the effectiveness of climate change frames in the face of a climate change denial counter-frame. Top. Cognit. Sci., 8, 7697, https://doi.org/10.1111/tops.12171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merkley, E., and D. A. Stecula, 2018: Party elites or manufactured doubt? The informational context of climate change polarization. Sci. Commun., 40, 258274, https://doi.org/10.1177/1075547018760334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mildenberger, M., J. R. Marlon, P. D. Howe, and A. Leiserowitz, 2017: The spatial distribution of Republican and Democratic climate opinions at state and local scales. Climatic Change, 145, 539548, https://doi.org/10.1007/s10584-017-2103-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milfont, T. L., L. Evans, C. G. Sibley, J. Ries, and A. Cunningham, 2014: Proximity to coast is linked to climate change belief. PLOS ONE, 9, e103180, https://doi.org/10.1371/journal.pone.0103180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murtagh, F., and P. Legendre, 2014: Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion? J. Classif., 31, 274295, https://doi.org/10.1007/s00357-014-9161-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neme, A., S. Hernández, and O. Neme, 2011: An electoral preferences model based on self-organizing maps. J. Comput. Sci., 2, 345352, https://doi.org/10.1016/j.jocs.2011.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nisbet, M., 2009: Communicating climate change: Why frames matter for public engagement. Environment, 51, 1223, https://doi.org/10.3200/ENVT.51.2.12-23.

    • Search Google Scholar
    • Export Citation
  • Pearce, W., R. Grundmann, M. Hulme, S. Raman, E. Hadley Kershaw, and J. Tsouvalis, 2017: Beyond counting climate consensus. Environ. Commun., 11, 723730, https://doi.org/10.1080/17524032.2017.1333965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pew Research Center, 2014: Political polarization in the American public. https://www.pewresearch.org/politics/2014/06/12/political-polarization-in-the-american-public/.

  • Ratcliffe, M., C. Burd, K. Holder, and A. Fields, 2016: Defining rural at the U.S. Census Bureau: American Community Survey and Geography Brief. U.S. Census Bureau Doc., 8 pp., https://www2.census.gov/geo/pdfs/reference/ua/Defining_Rural.pdf.

  • R Core Team, 2017: R: A language and environment for statistical computing. R Foundation for Statistical Computing, https://www.R-project.org/.

  • Rentfrow, P. J., S. D. Gosling, and J. Potter, 2008: A theory of the emergence, persistence, and expression of geographic variation in psychological characteristics. Perspect. Psychol. Sci., 3, 339369, https://doi.org/10.1111/j.1745-6924.2008.00084.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Retchless, D. P., 2018: Understanding local sea level rise risk perceptions and the power of maps to change them: The effects of distance and doubt. Environ. Behav., 50, 483511, https://doi.org/10.1177/0013916517709043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reusch, D. B., R. B. Alley, and B. C. Hewitson, 2005: Relative performance of self-organizing maps and principal component analysis in pattern extraction from synthetic climatological data. Polar Geogr., 29, 188212, https://doi.org/10.1080/789610199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rolfe-Redding, J. C., E. W. Maibach, L. Feldman, and A. A. Leiserowitz, 2011: Republicans and climate change: An audience analysis of predictors for belief and policy preferences. SSRN, 48 pp., https://doi.org/10.2139/ssrn.2026002.

    • Crossref
    • Export Citation
  • Roth, R. E., A. W. Woodruff, and Z. F. Johnson, 2010: Value-by-alpha maps: An alternative technique to the cartogram. Cartogr. J., 47, 130140, https://doi.org/10.1179/000870409X12488753453372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Şahin, M., 2020: Impact of weather on COVID-19 pandemic in Turkey. Sci. Total Environ., 728, 138810, https://doi.org/10.1016/j.scitotenv.2020.138810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sester, M., 2005: Optimization approaches for generalization and data abstraction. Int. J. Geogr. Inf. Sci., 19, 871897, https://doi.org/10.1080/13658810500161179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, A., and S. Dey, 2013: Using self-organizing maps for sentiment analysis. arXiv 1309.3946, 13 pp., https://arxiv.org/abs/1309.3946.

  • Smith, T. W., J. Kim, and J. Son, 2017: Public attitudes toward climate change and other environmental issues across countries. Int. J. Sociol., 47, 6280, https://doi.org/10.1080/00207659.2017.1264837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spence, A., W. Poortinga, and N. Pidgeon, 2012: The psychological distance of climate change. Risk Anal., 32, 957972, https://doi.org/10.1111/j.1539-6924.2011.01695.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stover, D., 2017: Bob Inglis: A conservative for climate action. Bull. At. Sci., 73, 364367, https://doi.org/10.1080/00963402.2017.1388661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tosepu, R., J. Gunawan, D. S. Effendy, L. O. A. I. Ahmad, H. Lestari, H. Bahar, and P. Asfian, 2020: Correlation between weather and Covid-19 pandemic in Jakarta, Indonesia. Sci. Total Environ., 725, 138436, https://doi.org/10.1016/j.scitotenv.2020.138436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Unsworth, K. L., and K. S. Fielding, 2014: It’s political: How the salience of one’s political identity changes climate change beliefs and policy support. Global Environ. Change, 27, 131137, https://doi.org/10.1016/j.gloenvcha.2014.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Boven, L., P. J. Ehret, and D. K. Sherman, 2018: Psychological barriers to bipartisan public support for climate policy. Perspect. Psychol. Sci., 13, 492507, https://doi.org/10.1177/1745691617748966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vesanto, J., 1999: SOM-based data visualization methods. Intell. Data Anal., 3, 111126, https://doi.org/10.3233/IDA-1999-3203.

  • Vesanto, J., and E. Alhoniemi, 2000: Clustering of the self-organizing map. IEEE Trans. Neural Networks, 11, 586600, https://doi.org/10.1109/72.846731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wehrens, R., and L. M. C. Buydens, 2007: Self- and super-organizing maps in R: The Kohonen package. J. Stat. Software, 21 (5), https://doi.org/10.18637/jss.v021.i05.

    • Crossref
    • Export Citation
  • Wehrens, R., and J. Kruisselbrink, 2018: Flexible self-organizing maps in Kohonen 3.0. J. Stat. Software, 87 (7), https://doi.org/10.18637/jss.v087.i07.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 469 469 21
Full Text Views 27 27 2
PDF Downloads 39 39 5

Exploratory Geovisualization of the Character and Distribution of American Climate Change Beliefs

View More View Less
  • 1 Department of Geography and Planning, Appalachian State University, Boone, North Carolina
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Americans remain polarized about climate change. However, recent scholarship reveals a plurality of climate change opinions among the public, with nontrivial support for a range of awareness, risk perceptions, and policy prescriptions. This study uses publicly available opinion estimates to examine the geographic variability of American climate change opinions and maps them as regions that share similarities or differences in the character of their beliefs. The exploratory geovisual environment of a self-organizing map is used to compare the support for 56 different climate opinions across all counties in the United States and arrange them into a spatially coherent grid of nodes. To facilitate the exploration of the patterns, a statistical cluster analysis groups together counties with the most similar climate beliefs. Choropleth maps visualize the clustering results from the self-organizing map. This study finds six groups of climate beliefs in which member counties exhibit a distinct regionality across the United States and share similarities in the magnitude of support for specific opinions. Groups that generally exhibit high or low levels of support for climate change awareness, risk perceptions, and policy prescriptions vary in their relative support for specific opinions. The results provide a nuanced understanding of different types of climate change opinions and where they exist geographically.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/WCAS-D-20-0071.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Johnathan Sugg, suggjw@appstate.edu

Abstract

Americans remain polarized about climate change. However, recent scholarship reveals a plurality of climate change opinions among the public, with nontrivial support for a range of awareness, risk perceptions, and policy prescriptions. This study uses publicly available opinion estimates to examine the geographic variability of American climate change opinions and maps them as regions that share similarities or differences in the character of their beliefs. The exploratory geovisual environment of a self-organizing map is used to compare the support for 56 different climate opinions across all counties in the United States and arrange them into a spatially coherent grid of nodes. To facilitate the exploration of the patterns, a statistical cluster analysis groups together counties with the most similar climate beliefs. Choropleth maps visualize the clustering results from the self-organizing map. This study finds six groups of climate beliefs in which member counties exhibit a distinct regionality across the United States and share similarities in the magnitude of support for specific opinions. Groups that generally exhibit high or low levels of support for climate change awareness, risk perceptions, and policy prescriptions vary in their relative support for specific opinions. The results provide a nuanced understanding of different types of climate change opinions and where they exist geographically.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/WCAS-D-20-0071.s1.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Johnathan Sugg, suggjw@appstate.edu

Supplementary Materials

    • Supplemental Materials (ZIP 111 KB)
Save