Assessment of NWS County Warning Area Tornado Risk, Exposure, and Vulnerability

Stephen M. Strader Department of Geography and the Environment, Villanova University, Villanova, Pennsylvania

Search for other papers by Stephen M. Strader in
Current site
Google Scholar
PubMed
Close
,
Alex M. Haberlie Department of Geography and Anthropology, Louisiana State University, Baton Rouge, Louisiana

Search for other papers by Alex M. Haberlie in
Current site
Google Scholar
PubMed
Close
, and
Alexandra G. Loitz Department of Geography and the Environment, Villanova University, Villanova, Pennsylvania

Search for other papers by Alexandra G. Loitz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the interrelationships between National Weather Service (NWS) county warning area (CWA) tornado risk, exposure, and societal vulnerability. CWA climatological tornado risk is determined using historical tornado event data, and exposure and vulnerability are assessed by employing present-day population, housing, socioeconomic, and demographic metrics. In addition, tornado watches, warnings, warning lead times, false alarm warnings, and unwarned tornado reports are examined in relation to CWA risk, exposure, and vulnerability. Results indicate that southeastern U.S. CWAs are more susceptible to tornado impacts because of their greater tornado frequencies and larger damage footprints intersecting more vulnerable populations (e.g., poverty and manufactured homes). Midwest CWAs experience fewer tornadoes relative to Southeast and southern plains CWAs but encompass faster tornado translational speeds and greater population densities where higher concentrations of vulnerable individuals often reside. Northern plains CWAs contain longer-tracked tornadoes on average and larger percentages of vulnerable elderly and rural persons. Southern plains CWAs experience the highest tornado frequencies in general and contain larger percentages of minority Latinx populations. Many of the most socially vulnerable CWAs have shorter warning lead times and greater percentages of false alarm warnings and unwarned tornadoes. Study findings provide NWS forecasters with an improved understanding of the relationships between tornado risk, exposure, vulnerability, and warning outcomes within their respective CWAs. Findings may also assist NWS Weather Forecast Offices and the Warning Decision Training Division with developing training materials aimed at increasing NWS forecaster knowledge of how tornado risk, exposure, and vulnerability factors influence local tornado disaster potential.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/WCAS-D-20-0107.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephen M Strader, stephen.strader@villanova.edu

Abstract

This study investigates the interrelationships between National Weather Service (NWS) county warning area (CWA) tornado risk, exposure, and societal vulnerability. CWA climatological tornado risk is determined using historical tornado event data, and exposure and vulnerability are assessed by employing present-day population, housing, socioeconomic, and demographic metrics. In addition, tornado watches, warnings, warning lead times, false alarm warnings, and unwarned tornado reports are examined in relation to CWA risk, exposure, and vulnerability. Results indicate that southeastern U.S. CWAs are more susceptible to tornado impacts because of their greater tornado frequencies and larger damage footprints intersecting more vulnerable populations (e.g., poverty and manufactured homes). Midwest CWAs experience fewer tornadoes relative to Southeast and southern plains CWAs but encompass faster tornado translational speeds and greater population densities where higher concentrations of vulnerable individuals often reside. Northern plains CWAs contain longer-tracked tornadoes on average and larger percentages of vulnerable elderly and rural persons. Southern plains CWAs experience the highest tornado frequencies in general and contain larger percentages of minority Latinx populations. Many of the most socially vulnerable CWAs have shorter warning lead times and greater percentages of false alarm warnings and unwarned tornadoes. Study findings provide NWS forecasters with an improved understanding of the relationships between tornado risk, exposure, vulnerability, and warning outcomes within their respective CWAs. Findings may also assist NWS Weather Forecast Offices and the Warning Decision Training Division with developing training materials aimed at increasing NWS forecaster knowledge of how tornado risk, exposure, and vulnerability factors influence local tornado disaster potential.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/WCAS-D-20-0107.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephen M Strader, stephen.strader@villanova.edu

Supplementary Materials

    • Supplemental Materials (PDF 499 KB)
Save
  • Agee, E., and S. Childs, 2014: Adjustments in tornado counts, F-scale intensity, and path width for assessing significant tornado destruction. J. Appl. Meteor. Climatol., 53, 14941505, https://doi.org/10.1175/JAMC-D-13-0235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, C. J., C. K. Wikle, Q. Zhou, and J. A. Royle, 2007: Population influences on tornado reports in the United States. Wea. Forecasting, 22, 571579, https://doi.org/10.1175/WAF997.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson-Frey, A. K., Y. P. Richardson, A. R. Dean, R. L. Thompson, and B. T. Smith, 2019: Characteristics of tornado events and warnings in the southeastern United States. Wea. Forecasting, 34, 10171034, https://doi.org/10.1175/WAF-D-18-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ash, K. D., 2017: A qualitative study of mobile home resident perspectives on tornadoes and tornado protective actions in South Carolina, USA. GeoJournal, 82, 533552, https://doi.org/10.1007/s10708-016-9700-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ash, K. D., M. J. Egnoto, S. M. Strader, W. S. Ashley, D. B. Roueche, K. E. Klockow-McClain, D. Caplen, and M. Dickerson, 2020: Structural forces: Perception and vulnerability factors for tornado sheltering within mobile and manufactured housing in Alabama and Mississippi. Wea. Climate Soc., 12, 453472, https://doi.org/10.1175/WCAS-D-19-0088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., 2007: Spatial and temporal analysis of tornado fatalities in the United States: 1880–2005. Wea. Forecasting, 22, 12141228, https://doi.org/10.1175/2007WAF2007004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., and S. M. Strader, 2016: Recipe for disaster: How the dynamic ingredients of risk and exposure are changing the tornado disaster landscape. Bull. Amer. Meteor. Soc., 97, 767786, https://doi.org/10.1175/BAMS-D-15-00150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., A. Krmenec, and R. Schwantes, 2008: Vulnerability due to nocturnal tornadoes. Wea. Forecasting, 23, 795807, https://doi.org/10.1175/2008WAF2222132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., S. Strader, T. Rosencrants, and A. J. Krmenec, 2014: Spatiotemporal changes in tornado hazard exposure: The case of the expanding bull’s-eye effect in Chicago, Illinois. Wea. Climate Soc., 6, 175193, https://doi.org/10.1175/WCAS-D-13-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., A. M. Haberlie, and J. Strohm, 2019: A climatology of quasi-linear convective systems and their hazards in the United States. Wea. Forecasting, 34, 16051631, https://doi.org/10.1175/WAF-D-19-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brodie, M., E. Weltzian, D. Altman, R. J. Blendon, and J. M. Benson, 2006: Experiences of Hurricane Katrina evacuees in Houston shelters: Implications for future planning. Amer. J. Public Health, 96, 14021408, https://doi.org/10.2105/AJPH.2005.084475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2004a: Tornado-warning performance in the past and future: A perspective from signal detection theory. Bull. Amer. Meteor. Soc., 85, 837844, https://doi.org/10.1175/BAMS-85-6-837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2004b: On the relationship of tornado path length and width to intensity. Wea. Forecasting, 19, 310319, https://doi.org/10.1175/1520-0434(2004)019<0310:OTROTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., and C. A. Doswell III, 2002: Deaths in the 3 May 1999 Oklahoma City tornado from a historical perspective. Wea. Forecasting, 17, 354361, https://doi.org/10.1175/1520-0434(2002)017<0354:DITMOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., and J. Correia Jr., 2018: Long-term performance metrics for National Weather Service tornado warnings. Wea. Forecasting, 33, 15011511, https://doi.org/10.1175/WAF-D-18-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and M. P. Kay, 2003: Climatological estimates of local daily tornado probability for the United States. Wea. Forecasting, 18, 626640, https://doi.org/10.1175/1520-0434(2003)018<0626:CEOLDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., G. W. Carbin, and P. T. Marsh, 2014: Increased variability of tornado occurrence in the United States. Science, 346, 349352, https://doi.org/10.1126/science.1257460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brotzge, J., and S. Erickson, 2009: NWS tornado warnings with zero or negative lead times. Wea. Forecasting, 24, 140154, https://doi.org/10.1175/2008WAF2007076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brotzge, J., and S. Erickson, 2010: Tornadoes without NWS warning. Wea. Forecasting, 25, 159172, https://doi.org/10.1175/2009WAF2222270.1.

  • Brotzge, J., S. Erickson, and H. E. Brooks, 2011: A 5-yr climatology of tornado false alarms. Wea. Forecasting, 26, 534544, https://doi.org/10.1175/WAF-D-10-05004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Center for Disease Control/Agency for Toxic Substances and Disease Registry, 2020: CDC’s social vulnerability index (SVI). Accessed 3 June 2020, https://svi.cdc.gov/data-and-tools-download.html.

  • Chaney, P. L., and G. S. Weaver, 2010: The vulnerability of mobile home residents in tornado disasters: The 2008 Super Tuesday tornado in Macon County, Tennessee. Wea. Climate Soc., 2, 190199, https://doi.org/10.1175/2010WCAS1042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiu, C. H., A. H. Schnall, C. E. Mertzlufft, R. S. Noe, A. F. Wolkin, J. Spears, M. Casey-Lockyer, and S. J. Vagi, 2013: Mortality from a tornado outbreak, Alabama, April 27, 2011. Amer. J. Public Health, 103, e52e58, https://doi.org/10.2105/AJPH.2013.301291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coleman, T. A., and P. G. Dixon, 2014: An objective analysis of tornado risk in the United States. Wea. Forecasting, 29, 366376, https://doi.org/10.1175/WAF-D-13-00057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cutter, S. L., 1996: Vulnerability to environmental hazards. Prog. Hum. Geogr., 20, 529539, https://doi.org/10.1177/030913259602000407.

  • Cutter, S. L., J. T. Mitchell, and M. S. Scott, 2000: Revealing the vulnerability of people and places: A case study of Georgetown County, South Carolina. Ann. Amer. Assoc. Geogr., 90, 713737, https://doi.org/10.1111/0004-5608.00219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cutter, S. L., B. J. Boruff, and W. L. Shirley, 2003: Social vulnerability to environmental hazards. Soc. Sci. Quart., 84, 242261, https://doi.org/10.1111/1540-6237.8402002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cutter, S. L., C. T. Emrich, J. T. Mitchell, B. J. Boruff, M. Gall, M. C. Schmidtlein, C. G. Burton, and G. Melton, 2006: The long road home: Race, class, and recovery from Hurricane Katrina. Environ. Sci. Policy, 48, 820, https://doi.org/10.3200/ENVT.48.2.8-20.

    • Search Google Scholar
    • Export Citation
  • Cutter, S. L., C. T. Emrich, J. J. Webb, and D. Morath, 2009: Social vulnerability to climate variability hazards: A review of the literature. Oxfam America Final Rep., 44 pp.

  • Dean, A., 2006: A look at the tornado report and watch climatology for the continental United States from 1986–2005. 23rd Conf. on Severe Local Storms, Saint Louis, MO, Amer. Meteor. Soc., P2.2, https://ams.confex.com/ams/pdfpapers/115113.pdf.

  • Department of Homeland Security, 2010: DHS risk lexicon. Department of Homeland Security Tech. Rep., 72 pp., https://www.cisa.gov/sites/default/files/publications/dhs-risk-lexicon-2010_0.pdf.

  • Dixon, P. G., A. E. Mercer, J. Choi, and J. S. Allen, 2011: Tornado risk analysis: Is Dixie Alley an extension of Tornado Alley? Bull. Amer. Meteor. Soc., 92, 433441, https://doi.org/10.1175/2010BAMS3102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, R. W., and T. W. Moore, 2012: Tornado vulnerability in Texas. Wea. Climate Soc., 4, 5968, https://doi.org/10.1175/WCAS-D-11-00004.1.

  • Donner, W. R., H. Rodriguez, and W. Diaz, 2012: Tornado warnings in three southern states: A qualitative analysis of public response patterns. J. Homeland Secur. Emerg. Manage., 9, https://doi.org/10.1515/1547-7355.1955.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and J. A. Flueck, 1989: Forecasting and verifying in a field research project: DOPLIGHT’87. Wea. Forecasting, 4, 97109, https://doi.org/10.1175/1520-0434(1989)004<0097:FAVIAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, R. Davies-Jones, and D. L. Keller, 1990: On summary measures of skill in rare event forecasting based on contingency tables. Wea. Forecasting, 5, 576585, https://doi.org/10.1175/1520-0434(1990)005<0576:OSMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and M. P. Kay, 2005: Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. Wea. Climate Soc., 20, 577595, https://doi.org/10.1175/WAF866.1.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., 2012: Tropical cyclone tornadoes: A review of knowledge in research and prediction. Electron. J. Severe Storms Meteor., 7 (6), https://ejssm.org/ojs/index.php/ejssm/article/viewArticle/97.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., J. LaDue, J. Ferree, K. Scharfenberg, C. Maier, and W. Coulbourne, 2013: Tornado intensity estimation: Past, present and future. Bull. Amer. Meteor. Soc., 94, 641653, https://doi.org/10.1175/BAMS-D-11-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elder, K., S. Xirasagar, N. Miller, S. A. Bowen, S. Glover, and C. Piper, 2007: African Americans’ decisions not to evacuate new Orleans before Hurricane Katrina: A qualitative study. Amer. J. Public Health, 97, S124S129, https://doi.org/10.2105/AJPH.2006.100867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., T. H. Jagger, and T. Fricker, 2016: Statistical models for tornado climatology: Long and short-term views. PLOS ONE, 11, e0166895, https://doi.org/10.1371/journal.pone.0166895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emrich, C. T., and S. L. Cutter, 2011: Social vulnerability to climate-sensitive hazards in the southern United States. Wea. Climate Soc., 3, 193208, https://doi.org/10.1175/2011WCAS1092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanagan, B. E., E. W. Gregory, E. J. Hallisey, J. L. Heitgerd, and B. Lewis, 2011: A social vulnerability index for disaster management. J. Homeland Secur. Emerg. Manage., 8, 0000102202154773551792, https://doi.org/10.2202/1547-7355.1792.

    • Search Google Scholar
    • Export Citation
  • Flanagan, B. E., E. J. Hallisey, E. Adams, and A. Lavery, 2018: Measuring community vulnerability to natural and anthropogenic hazards: The Centers for Disease Control and Prevention’s social vulnerability index. J. Environ. Health, 80 (10), 3436, https://svi.cdc.gov/Documents/Publications/CDC_ATSDR_SVI_Materials/JEH2018.pdf.

    • Search Google Scholar
    • Export Citation
  • Fothergill, A., and L. Peek, 2004: Poverty and disasters in the United States: A review of recent sociological findings. Nat. Hazards, 32, 89110, https://doi.org/10.1023/B:NHAZ.0000026792.76181.d9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fricker, T., 2020: Tornado-level estimates of socioeconomic and demographic variables. Nat. Hazards Rev., 21, 04020018, https://doi.org/10.1061/(ASCE)NH.1527-6996.0000379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., and W. S. Ashley, 2011: Climatology of potentially severe convective environments from the North American Regional Reanalysis. Electron. J. Severe Storms Meteor., 6 (8), http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/85.

    • Search Google Scholar
    • Export Citation
  • Gensini, V. A. and H. E. Brooks, 2018: Spatial trends in United States tornado frequency. npj Climate Atmos. Sci., 1, 38, https://doi.org/10.1038/s41612-018-0048-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grossi, P., 2005: Catastrophe Modeling: A New Approach to Managing Risk. Vol. 25, Springer Science and Business Media, 252 pp.

    • Crossref
    • Export Citation
  • Harrison, D. R., and C. D. Karstens, 2017: A climatology of operational storm-based warnings: A geospatial analysis. Wea. Forecasting, 32, 4760, https://doi.org/10.1175/WAF-D-15-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoekstra, S., K. Klockow, R. Riley, J. Brotzge, H. Brooks, and S. Erickson, 2011: A preliminary look at the social perspective of Warn-On-Forecast: Preferred tornado warning lead time and the general public’s perceptions of weather risks. Wea. Climate Soc., 3, 128140, https://doi.org/10.1175/2011WCAS1076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, R. R., D. S. LaDue, H. M. Mogil, J. G. Trafton, and P. J. Roebber, 2017: Minding the Weather: How Expert Forecasters Think. MIT Press, 488 pp.

    • Crossref
    • Export Citation
  • IPCC, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. C. B. Field et al., Eds., Cambridge University Press, 582 pp., https://www.ipcc.ch/report/managing-the-risks-of-extreme-events-and-disasters-to-advance-climate-change-adaptation/.

  • Johns, R. H., and C. A. Doswell III, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612, https://doi.org/10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., and Coauthors, 2014: Meteorological overview of the devastating 27 April 2011 tornado outbreak. Bull. Amer. Meteor. Soc., 95, 10411062, https://doi.org/10.1175/BAMS-D-11-00229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krocak, M. J., and H. E. Brooks, 2018: Climatological estimates of hourly tornado probability for the United States. Wea. Forecasting, 33, 5969, https://doi.org/10.1175/WAF-D-17-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, J. R., B. F. Liu, and M. Egnoto, 2019: Cry wolf effect? Evaluating the impact of false alarms on public responses to tornado alerts in the southeastern United States. Wea. Climate Soc., 11, 549563, https://doi.org/10.1175/WCAS-D-18-0080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., D. E. Buechler, S. J. Goodman, and M. Cammarata, 2004: Doppler radar and lightning network observations of a severe outbreak of tropical cyclone tornadoes. Mon. Wea. Rev., 132, 17471763, https://doi.org/10.1175/1520-0493(2004)132<1747:DRALNO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNulty, R. P., 1995: Severe and convective weather: A central region forecasting challenge. Wea. Forecasting, 10, 187202, https://doi.org/10.1175/1520-0434(1995)010<0187:SACWAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrow, B. H., 1999: Identifying and mapping community vulnerability. Disasters, 23, 118, https://doi.org/10.1111/1467-7717.00102.

  • Morrow, B. H., 2008: Community resilience: A social justice perspective. The Community and Regional Resilience Initiative Research Rep. 4, 31 pp.

  • Morss, R., O. Wilhelmi, G. A. Meehl, and L. Dilling, 2011: Improving societal outcomes of extreme weather in a changing climate: An integrated perspective. Annu. Rev. Environ. Resour., 36, 125, https://doi.org/10.1146/annurev-environ-060809-100145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEI, 2020: Storm Events Database. NOAA/NCEI, accessed 25 May 2020, https://www.ncdc.noaa.gov/stormevents/.

  • Nelson, J. E., 2015: The effects of severe weather warnings on limited English proficient (LEP) Hispanics/Latinos in rural Nebraska. M.S. thesis, Emergency Preparedness, University of Nebraska Medical Center, 60 pp.

  • Paul, B. K., 2011: Environmental Hazards and Disasters. John Wiley and Sons, 322 pp.

    • Crossref
    • Export Citation
  • Peacock, W. G., B. H. Morrow, and H. Gladwin, 1997: Hurricane Andrew: Ethnicity, Gender, and the Sociology of Disasters. Psychology Press, 277 pp.

  • Peguero, A., 2006: Latino disaster vulnerability: The dissemination of hurricane mitigation information among Florida’s homeowners. Hisp. J. Behav. Sci., 28, 522, https://doi.org/10.1177/0739986305284012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, B. D., and P. L. Hewett, 2005: Home alone: Disasters, mass emergencies, and children in self-care. J. Emerg. Manage., 3, 3135, https://doi.org/10.5055/jem.2005.0018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., C. Broyles, P. S. Skinner, H. E. Brooks, and E. Rasmussen, 2019: A Bayesian hierarchical modeling framework for correcting reporting bias in the US tornado database. Wea. Forecasting, 34, 1530, https://doi.org/10.1175/WAF-D-18-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidlin, T. W., B. O. Hammer, Y. Ono, and P. S. King, 2009: Tornado shelter-seeking behavior and tornado shelter options among mobile home residents in the United States. Nat. Hazards, 48, 191201, https://doi.org/10.1007/s11069-008-9257-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherman-Morris, K., and M. E. Brown, 2012: Experiences of Smithville, Mississippi residents with the 27 April 2011 tornado. Natl. Wea. Dig., 36, 93101.

    • Search Google Scholar
    • Export Citation
  • Simmons, K. M., and D. Sutter, 2008: Tornado warnings, lead times, and tornado casualties: An empirical investigation. Wea. Forecasting, 23, 246258, https://doi.org/10.1175/2007WAF2006027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, K. M., and D. Sutter, 2009: False alarms, tornado warnings, and tornado casualties. Wea. Climate Soc., 1, 3853, https://doi.org/10.1175/2009WCAS1005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, K. M., and D. Sutter, 2011: Tornado climatology and society’s tornado risk. Economic and Societal Impacts of Tornadoes, Amer. Meteor. Soc., 9–44.

    • Crossref
    • Export Citation
  • SPC, 2020: SVRGIS. NOAA, accessed 1 May 2020, https://www.spc.noaa.gov/gis/svrgis/.

  • Strader, S. M., and W. S. Ashley, 2018: Finescale assessment of mobile home tornado vulnerability in the central and southeast United States. Wea. Climate Soc., 10, 797812, https://doi.org/10.1175/WCAS-D-18-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strader, S. M., W. S. Ashley, T. J. Pingel, and A. J. Krmenec, 2017: Projected 21st century changes in tornado exposure, risk, and disaster potential. Climatic Change, 141, 301313, https://doi.org/10.1007/s10584-017-1905-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strader, S. M., K. Ash, E. Wagner, and C. Sherrod, 2019: Mobile home resident evacuation vulnerability and emergency medical service access during tornado events in the southeast United States. Int. J. Disaster Risk Reduct., 38, 101210, https://doi.org/10.1016/j.ijdrr.2019.101210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strader, S. M., D. Roueche, and B. David, 2020: Unpacking tornado disasters: Illustrating the southeast U.S. tornado-mobile and manufactured housing problem using the March 3, 2019 Beauregard-Smith Station, Alabama tornado event. Nat. Hazards Rev., 04020060, 22, https://doi.org/10.1061/(ASCE)NH.1527-6996.0000436.

    • Search Google Scholar
    • Export Citation
  • Sutter, D., and K. M. Simmons, 2010: Tornado fatalities and mobile homes in the United States. Nat. Hazards, 53, 125137, https://doi.org/10.1007/s11069-009-9416-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theobald, D. M., 2005: Landscape patterns of exurban growth in the USA from 1980 to 2020. Ecol. Soc., 10, 32, https://doi.org/10.5751/ES-01390-100132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 11361154, https://doi.org/10.1175/WAF-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tierney, K., 2006: Foreshadowing Katrina: Recent sociological contributions to vulnerability science. Contemp. Sociol., 35, 207212, https://doi.org/10.1177/009430610603500302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., J. T. Allen, V. A. Gensini, and H. E. Brooks, 2015: Climate and hazardous convective weather. Curr. Climate Change Rep., 1, 6073, https://doi.org/10.1007/s40641-015-0006-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trainor, J. E., D. Nagele, B. Philips, and B. Scott, 2015: Tornadoes, social science, and the false alarm effect. Wea. Climate Soc., 7, 333352, https://doi.org/10.1175/WCAS-D-14-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verbout, S. M., H. E. Brooks, L. M. Leslie, and D. M. Schultz, 2006: Evolution of the US tornado database: 1954–2003. Wea. Forecasting, 21, 8693, https://doi.org/10.1175/WAF910.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wind Science and Engineering Center, 2006: A recommendation for an enhanced Fujita scale (EF-scale). Texas Tech University Wind Science and Engineering Center Rep., 95 pp., https://www.depts.ttu.edu/nwi/Pubs/EnhancedFujitaScale/EFScale.pdf.

  • Wolkin, A., J. R. Patterson, S. Harris, E. Soler, S. Burrer, M. McGeehin, and S. Greene, 2015: Reducing public health risk during disasters: Identifying social vulnerabilities. J. Homeland Secur. Emerg. Manage., 12, 809822, https://doi.org/10.1515/jhsem-2014-0104.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 117502 0 0
Full Text Views 268348 50026 199
PDF Downloads 1592 244 15