• Allen, J. T., M. K. Tippett, and A. H. Sobel, 2015a: An empirical model relating U.S. monthly hail occurrence to large-scale meteorological environment. J. Adv. Model. Earth Syst., 7, 226243, https://doi.org/10.1002/2014MS000397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. K. Tippett, and A. H. Sobel, 2015b: Influence of the El Niño/Southern Oscillation on tornado and hail frequency in the United States. Nat. Geosci., 8, 278283, https://doi.org/10.1038/ngeo2385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson-Frey, A. K., and H. Brooks, 2019: Tornado fatalities: An environmental perspective. Wea. Forecasting, 34, 19992015, https://doi.org/10.1175/WAF-D-19-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson-Frey, A. K., Y. P. Richardson, A. R. Dean, R. L. Thompson, and B. T. Smith, 2018: Near-storm environments of outbreak and isolated tornadoes. Wea. Forecasting, 33, 13971412, https://doi.org/10.1175/WAF-D-18-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., and S. M. Strader, 2016: Recipe for disaster: How the dynamic ingredients of risk and exposure are changing the tornado disaster landscape. Bull. Amer. Meteor. Soc., 97, 767786, https://doi.org/10.1175/BAMS-D-15-00150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biddle, M. D., R. P. Brown, C. A. Doswell, and D. R. Legates, 2020: Regional differences in the human toll from tornadoes: A new look at an old idea. Wea. Climate Soc., 12, 815825, https://doi.org/10.1175/WCAS-D-19-0051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell, and J. Cooper, 1994: On the environments of tornadic and nontornadic mesocyclones. Wea. Forecasting, 9, 606618, https://doi.org/10.1175/1520-0434(1994)009<0606:OTEOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., G. W. Carbin, and P. T. Marsh, 2014: Increased variability of tornado occurrence in the United States. Science, 346, 349352, https://doi.org/10.1126/science.1257460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, A. E., J. B. Cohen, R. L. Thompson, and B. T. Smith, 2018: Simulating tornado probability and tornado wind speed based on statistical models. Wea. Forecasting, 33, 10991108, https://doi.org/10.1175/WAF-D-17-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Concannon, P., H. E. Brooks, and C. A. Doswell, 2000: Climatological risk of strong and violent tornadoes in the United States. Second Symp. on Environmental Applications, Long Beach, CA, Amer. Meteor. Soc., 212–219.

  • Dean, A. R., 2010: An analysis of clustered tornado events. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., P2.19, https://ams.confex.com/ams/pdfpapers/176148.pdf.

  • Dixon, P. G., A. E. Mercer, K. Grala, and W. H. Cooke, 2014: Objective identification of tornado seasons and ideal spatial smoothing radii. Earth Interact., 18, https://doi.org/10.1175/2013EI000559.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, R. W., and T. W. Moore, 2012: Tornado vulnerability in Texas. Wea. Climate Soc., 4, 5968, https://doi.org/10.1175/WCAS-D-11-00004.1.

  • Doswell, C. A., R. Edwards, R. L. Thompson, J. A. Hart, and K. C. Crosbie, 2006: A simple and flexible method for ranking severe weather events. Wea. Forecasting, 21, 939951, https://doi.org/10.1175/WAF959.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., and C. P. Schmertmann, 1994: Assessing forecast skill through cross validation. Wea. Forecasting, 9, 619624, https://doi.org/10.1175/1520-0434(1994)009<0619:AFSTCV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., and Z. Schroder, 2019: Tornado damage ratings estimated with cumulative logistic regression. J. Appl. Meteor. Climatol., 58, 27332741, https://doi.org/10.1175/JAMC-D-19-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., S. C. Elsner, and T. H. Jagger, 2015: The increasing efficiency of tornado days in the United States. Climate Dyn., 45, 651659, https://doi.org/10.1007/s00382-014-2277-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., T. Fricker, and W. D. Berry, 2018: A model for U.S. tornado casualties involving interaction between damage path estimates of population density and energy dissipation. J. Appl. Meteor. Climatol., 57, 20352046, https://doi.org/10.1175/JAMC-D-18-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forbes, G. S., 2006: Meteorological aspects of high-impact tornado outbreaks. Symp. Challenges of Severe Convective Storms, Atlanta, GA, Amer. Meteor. Soc., P1.12, https://ams.confex.com/ams/pdfpapers/99383.pdf.

  • Fricker, T., and J. B. Elsner, 2019: Unusually devastating tornadoes in the United States: 1995–2016. Ann. Amer. Assoc. Geogr., 110, 724738, https://doi.org/10.1080/24694452.2019.1638753.

    • Search Google Scholar
    • Export Citation
  • Fricker, T., J. B. Elsner, and T. H. Jagger, 2017: Population and energy elasticity of tornado casualties. Geophys. Res. Lett., 44, 39413949, https://doi.org/10.1002/2017GL073093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 15111534, https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galway, J. G., 1977: Some climatological aspects of tornado outbreaks. Mon. Wea. Rev., 105, 477484, https://doi.org/10.1175/1520-0493(1977)105<0477:SCAOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., and W. Ashley, 2011: Climatology of potentially severe convective environments from the North American Regional Reanalysis. Electron. J. Severe Storms Meteor., 6 (8), https://ejssm.org/ojs/index.php/ejssm/article/viewArticle/85.

    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., T. L. Mote, and H. E. Brooks, 2014: Severe-thunderstorm reanalysis environments and collocated radiosonde observations. J. Appl. Meteor. Climatol., 53, 742751, https://doi.org/10.1175/JAMC-D-13-0263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heiss, W. H., D. L. McGrew, and D. Sirmans, 1990: NEXRAD: Next generation weather radar (WSR-88D). Microwave J., 33, 79.

  • Hilbe, J., 2011: Negative Binomial Regression. Cambridge University Press, 553 pp.

  • Hill, A. J., G. R. Herman, and R. S. Schumacher, 2020: Forecasting severe weather with random forests. Mon. Wea. Rev., 148, 21352161, https://doi.org/10.1175/MWR-D-19-0344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchens, N. M., and H. E. Brooks, 2014: Evaluation of the Storm Prediction Center’s convective outlooks from day 3 through day 1. Wea. Forecasting, 29, 11341142, https://doi.org/10.1175/WAF-D-13-00132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, J. D., and M. E. Brown, 2009: Sounding-derived low-level thermodynamic characteristics associated with tornadic and non-tornadic supercell environments in the southeast United States. Natl. Wea. Dig., 33, 1626.

    • Search Google Scholar
    • Export Citation
  • Klockow, K. E., R. A. Peppler, and R. A. McPherson, 2014: Tornado folk science in Alabama and Mississippi in the 27 April 2011 tornado outbreak. GeoJournal, 79, 791804, https://doi.org/10.1007/s10708-013-9518-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and et al. , 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, T. W., 2017: On the temporal and spatial characteristics of tornado days in the United States. Atmos. Res., 184, 5665, https://doi.org/10.1016/j.atmosres.2016.10.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, T. W., R. W. Dixon, and N. J. Sokol, 2016: Tropical Cyclone Ivan’s tornado cluster in the Mid-Atlantic region of the United States on 17–18 September 2004. Phys. Geogr., 37, 210227, https://doi.org/10.1080/02723646.2016.1189299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroder, Z., and J. B. Elsner, 2019: Quantifying relationships between environmental factors and power dissipation on the most prolific days in the largest tornado “outbreaks.” Int. J. Climatol., 40, 31503160, https://doi.org/10.1002/joc.6388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senkbeil, J. C., D. A. Scott, P. Guinazu-Walker, and M. S. Rockman, 2013: Ethnic and racial differences in tornado hazard perception, preparedness, and shelter lead time in Tuscaloosa. Prof. Geogr., 66, 610620, https://doi.org/10.1080/00330124.2013.826562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shafer, C. M., and C. A. Doswell, 2011: Using kernel density estimation to identify, rank, and classify severe weather outbreak events. Electron. J. Severe Storms Meteor., 6 (2), https://ejssm.org/ojs/index.php/ejssm/article/viewArticle/74.

    • Search Google Scholar
    • Export Citation
  • Steiner, E., 2019: Spatial history project. Stanford University Center for Spatial and Textual Analysis, http://web.stanford.edu/group/spatialhistory/cgi-bin/site/index.php.

  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the rapid update cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:cpswse>2.0.co;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., and et al. , 2017: Tornado damage rating probabilities derived from WSR-88D data. Wea. Forecasting, 32, 15091528, https://doi.org/10.1175/WAF-D-17-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., A. H. Sobel, and S. J. Camargo, 2012: Association of U.S. tornado occurrence with monthly environmental parameters. Geophys. Res. Lett., 39, L02801, https://doi.org/10.1029/2011GL050368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., C. Lepore, and J. E. Cohen, 2016: More tornadoes in the most extreme U.S. tornado outbreaks. Science, 354, 14191423, https://doi.org/10.1126/science.aah7393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venables, W. N., and B. D. Ripley, 2002: Modern Applied Statistics with S. 4th ed. Springer, 495 pp.

    • Crossref
    • Export Citation
  • Wickham, H., 2017: tidyverse: Easily install and load ‘Tidyverse’ packages, version 1.1.1. R package, https://CRAN.R-project.org/package=tidyverse.

All Time Past Year Past 30 Days
Abstract Views 307 307 60
Full Text Views 40 40 5
PDF Downloads 52 52 6

Estimating “Outbreak”-Level Tornado Counts and Casualties from Environmental Variables

View More View Less
  • 1 a Department of Geography, Florida State University, Tallahassee, Florida
  • | 2 b Florida State University, Tallahassee, Florida
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Environmental variables are routinely used in estimating when and where tornadoes are likely to occur, but more work is needed to understand how tornado and casualty counts of severe weather outbreak vary with the larger-scale environmental factors. Here the authors demonstrate a method to quantify “outbreak”-level tornado and casualty counts with respect to variations in large-scale environmental factors. They do this by fitting negative binomial regression models to cluster-level environmental data to estimate the number of tornadoes and the number of casualties on days with at least 10 tornadoes. Results show that a 1000 J kg−1 increase in CAPE corresponds to a 5% increase in the number of tornadoes and a 28% increase in the number of casualties, conditional on at least 10 tornadoes and holding the other variables constant. Further, results show that a 10 m s−1 increase in deep-layer bulk shear corresponds to a 13% increase in tornadoes and a 98% increase in casualties, conditional on at least 10 tornadoes and holding the other variables constant. The casualty-count model quantifies the decline in the number of casualties per year and indicates that outbreaks have a larger impact in the Southeast than elsewhere after controlling for population and geographic area.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zoe Schroder, zms17b@my.fsu.edu

Abstract

Environmental variables are routinely used in estimating when and where tornadoes are likely to occur, but more work is needed to understand how tornado and casualty counts of severe weather outbreak vary with the larger-scale environmental factors. Here the authors demonstrate a method to quantify “outbreak”-level tornado and casualty counts with respect to variations in large-scale environmental factors. They do this by fitting negative binomial regression models to cluster-level environmental data to estimate the number of tornadoes and the number of casualties on days with at least 10 tornadoes. Results show that a 1000 J kg−1 increase in CAPE corresponds to a 5% increase in the number of tornadoes and a 28% increase in the number of casualties, conditional on at least 10 tornadoes and holding the other variables constant. Further, results show that a 10 m s−1 increase in deep-layer bulk shear corresponds to a 13% increase in tornadoes and a 98% increase in casualties, conditional on at least 10 tornadoes and holding the other variables constant. The casualty-count model quantifies the decline in the number of casualties per year and indicates that outbreaks have a larger impact in the Southeast than elsewhere after controlling for population and geographic area.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zoe Schroder, zms17b@my.fsu.edu
Save