• Ahmed, T., K. M. Muttaqi, and A. P. Agalgaonkar, 2012: Climate change impacts on electricity demand in the State of New South Wales, Australia. Appl. Energy, 98, 376383, https://doi.org/10.1016/j.apenergy.2012.03.059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asadoorian, M. O., R. S. Eckaus, and C. A. Schlosser, 2008: Modeling climate feedbacks to electricity demand: The case of China. Energy Econ., 30, 15771602, https://doi.org/10.1016/j.eneco.2007.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baniassadi, A., J. Heusinger, and D. J. Sailor, 2018: Energy efficiency vs resiliency to extreme heat and power outages: The role of evolving building energy codes. Build. Environ., 139, 8694, https://doi.org/10.1016/j.buildenv.2018.05.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bessec, M., and J. Fouquau, 2008: The non-linear link between electricity consumption and temperature in Europe: A threshold panel approach. Energy Econ., 30, 27052721, https://doi.org/10.1016/j.eneco.2008.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breusch, T. S., and A. R. Pagan, 1980: The Lagrange multiplier test and its applications to model specification in econometrics. Rev. Econ. Stud., 47, 239253, https://doi.org/10.2307/2297111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, R. J., and S. Lowry, 2012: Weather-related power outages and electric system resiliency. Congressional Research Service Rep. for Congress R42696, 18 pp., https://fas.org/sgp/crs/misc/R42696.pdf.

  • Castillo, A., 2014: Risk analysis and management in power outage and restoration: A literature survey. Electr. Power Syst. Res., 107, 915, https://doi.org/10.1016/j.epsr.2013.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, W., I. S. Hsiao, C. H. Hsu, and J. C. Chen, 2004: Change in water temperature on the immune response of Taiwan abalone Haliotis diversicolor supertexta and its susceptibility to Vibrio parahaemolyticus. Fish Shellfish Immunol., 17, 235243, https://doi.org/10.1016/j.fsi.2004.03.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, R. D., and S. Weisberg, 1983: Diagnostics for heteroscedasticity in regression. Biometrika, 70, 110, https://doi.org/10.1093/biomet/70.1.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Damm, A., J. Köberl, F. Prettenthaler, N. Rogler, and C. Töglhofer, 2017: Impacts of +2°C global warming on electricity demand in Europe. Climate Serv., 7, 1230, https://doi.org/10.1016/j.cliser.2016.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Felice, M., A. Alessandri, and P. M. Ruti, 2013: Electricity demand forecasting over Italy: Potential benefits using numerical weather prediction models. Electr. Power Syst. Res., 104, 7179, https://doi.org/10.1016/j.epsr.2013.06.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dergiades, T., and L. Tsoulfidis, 2008: Estimating residential demand for electricity in the United States, 1965-2006. Energy Econ., 30, 27222730, https://doi.org/10.1016/j.eneco.2008.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dumas, M., B. Kc, and C. I. Cunliff, 2019: Extreme weather and climate vulnerabilities of the electric grid: A summary of environmental sensitivity quantification methods. Oak Ridge National Laboratory Rep. ORNL/TM-2019/1252, 27 pp., https://doi.org/10.2172/1558514.

    • Crossref
    • Export Citation
  • Eskeland, G. S., and T. K. Mideksa, 2010: Electricity demand in a changing climate. Mitigation Adapt. Strategies Global Change, 15, 877897, https://doi.org/10.1007/s11027-010-9246-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hausman, J. A., 1978: Specification tests in econometrics. Econometrica, 46, 12511271, https://doi.org/10.2307/1913827.

  • Hekkenberg, M., R. M. J. Benders, H. C. Moll, and A. J. M. Schoot Uiterkamp, 2009: Indications for a changing electricity demand pattern: The temperature dependence of electricity demand in the Netherlands. Energy Policy, 37, 15421551, https://doi.org/10.1016/j.enpol.2008.12.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtedahl, P., and F. L. Joutz, 2004: Residential electricity demand in Taiwan. Energy Econ., 26, 201224, https://doi.org/10.1016/j.eneco.2003.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, T., W.-K. Chang, and H.-W. Lin, 2013: A fresh look at weather impact on peak electricity demand and energy use of buildings using 30-year actual weather data. Appl. Energy, 111, 333350, https://doi.org/10.1016/j.apenergy.2013.05.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hung, M. F., and T. H. Huang, 2015: Dynamic demand for residential electricity in Taiwan under seasonality and increasing-block pricing. Energy Econ., 48, 168177, https://doi.org/10.1016/j.eneco.2015.01.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2018: Summary for policymakers. Global Warming of 1.5°C, V. Masson-Delmotte et al., Eds., Cambridge University Press, 32 pp., https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_SPM_version_report_LR.pdf.

  • Jacklitsch, B. L., W. J. Williams, K. Musolin, A. Coca, J. H. Kim, and N. Turner, 2016: Occupational exposure to heat and hot environments: Revised criteria 2016. Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health Rep., 159 pp., https://permanent.fdlp.gov/gpo67041/2016-106.pdf.

  • Ke, X., D. Wu, J. Rice, M. Kintner-Meyer, and N. Lu, 2016: Quantifying impacts of heat waves on power grid operation. Appl. Energy, 183, 504512, https://doi.org/10.1016/j.apenergy.2016.08.188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koppe, C., R. Sari Kovats, B. Menne, G. Jendritzky, and D. Wetterdienst, 2004: Heat-waves: Risks and responses. WHO Regional Office for Europe Rep. EUR/03/5036810, 124 pp., https://www.euro.who.int/__data/assets/pdf_file/0008/96965/E82629.pdf.

  • Lam, J. C., H. L. Tang, and D. H. W. Li, 2008: Seasonal variations in residential and commercial sector electricity consumption in Hong Kong. Energy, 33, 513523, https://doi.org/10.1016/j.energy.2007.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, L. M., 1980: Analysis of time series with calendar effects. Manage. Sci., 26, 106112, https://doi.org/10.1287/mnsc.26.1.106.

  • Liu, L. M., 1986: Identification of time series models in presence of calendar variation. Int. J. Forecasting, 2, 357372, https://doi.org/10.1016/0169-2070(86)90054-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, https://doi.org/10.1126/science.1098704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, N. L., K. Hayhoe, J. Jin, and M. Auffhammer, 2008: Climate, extreme heat, and electricity demand in California. J. Appl. Meteor. Climatol., 47, 18341844, https://doi.org/10.1175/2007JAMC1480.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirasgedis, S., Y. Sarafidis, E. Georgopoulou, D. P. Lalas, M. Moschovits, F. Karagiannis, and D. Papakonstantinou, 2006: Models for mid-term electricity demand forecasting incorporating weather influences. Energy, 31, 208227, https://doi.org/10.1016/j.energy.2005.02.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moral-Carcedo, J., and J. Pérez-García, 2015: Temperature effects on firms’ electricity demand: An analysis of sectorial differences in Spain. Appl. Energy, 142, 407425, https://doi.org/10.1016/j.apenergy.2014.12.064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pilli-Sihvola, K., P. Aatola, M. Ollikainen, and H. Tuomenvirta, 2010: Climate change and electricity consumption—Witnessing increasing or decreasing use and costs? Energy Policy, 38, 24092419, https://doi.org/10.1016/j.enpol.2009.12.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhodes, J. D., W. J. Cole, C. R. Upshaw, T. F. Edgar, and M. E. Webber, 2014: Clustering analysis of residential electricity demand profiles. Appl. Energy, 135, 461471, https://doi.org/10.1016/j.apenergy.2014.08.111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandels, C., J. Widén, and L. Nordström, 2014: Forecasting household consumer electricity load profiles with a combined physical and behavioral approach. Appl. Energy, 131, 267278, https://doi.org/10.1016/j.apenergy.2014.06.048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shahid, S., 2012: Vulnerability of the power sector of Bangladesh to climate change and extreme weather events. Reg. Environ. Change, 12, 595606, https://doi.org/10.1007/s10113-011-0276-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, Y. W., 2018: Electricity demand in industrial and service sectors in Taiwan. Energy Effic., 11, 15411557, https://doi.org/10.1007/s12053-018-9615-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, Y. W., 2020: Residential electricity demand in Taiwan: The effects of urbanization and energy poverty. J. Asia Pac. Econ., 25, 733756, https://doi.org/10.1080/13547860.2019.1706870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sung, T. I., P. C. Wu, S. C. Lung, C. Y. Lin, M. J. Chen, and H. J. Su, 2013: Relationship between heat index and mortality of 6 major cities in Taiwan. Sci. Total Environ., 442, 275281, https://doi.org/10.1016/j.scitotenv.2012.09.068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tung, C.-P., T.-C. Tseng, A.-L. Huang, T.-M. Liu, and M.-C. Hu, 2013: Impact of climate change on Taiwanese power market determined using linear complementarity model. Appl. Energy, 102, 432439, https://doi.org/10.1016/j.apenergy.2012.07.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vassileva, I., F. Wallin, and E. Dahlquist, 2012: Analytical comparison between electricity consumption and behavioral characteristics of Swedish households in rented apartments. Appl. Energy, 90, 182188, https://doi.org/10.1016/j.apenergy.2011.05.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wooldridge, J. M., 2010: Econometric Analysis of Cross Section and Panel Data. MIT Press, 1096 pp.

  • Wu, P. C., J. G. Lay, H. R. Guo, C. Y. Lin, S. C. Lung, and H. J. Su, 2009: Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan. Sci. Total Environ., 407, 22242233, https://doi.org/10.1016/j.scitotenv.2008.11.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X. Y., and B. W. Ang, 2014: Analyzing residential energy consumption using index decomposition analysis. Appl. Energy, 113, 342351, https://doi.org/10.1016/j.apenergy.2013.07.052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zachariadis, T., and N. Pashourtidou, 2007: An empirical analysis of electricity consumption in Cyprus. Energy Econ., 29, 183198, https://doi.org/10.1016/j.eneco.2006.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 405 405 39
Full Text Views 38 38 1
PDF Downloads 45 45 2

The Effects of Extreme High Temperature Day Off on Electricity Conservation

View More View Less
  • 1 a Industrial Technology Research Institute, Hsinchu, Taiwan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The continuously increasing temperatures worldwide indicate that the frequently extreme heat in summer will become a new normal. The extreme high temperature (EHT) could be dangerous to human health, especially for outdoor workers or commuters, and could increase the risk of grid collapse. Thus, the possibility of a day off due to EHT has started to be discussed in Taiwan, based on the experience of typhoon day off, but discussions have not yet concluded. In this study, the effects of the EHT day off on electricity consumption in the industrial, service, and residential sectors were investigated through two determinants: First, high temperature would increase the electricity consumption in space cooling. Second, a day off would change people’s behavior of electricity consumption from workday to nonworkday modes. Combining the effects of cooling hours and nonworkdays, the net influence of the EHT day off on electricity consumption can be evaluated. Estimated results indicated that an EHT day off can reduce aggregate electricity consumption by between 0.41% and 1.08%. The reduction of electricity consumption due to the off day offsets the increase driven by high temperatures. Thus, an EHT day off will mitigate the pressure on the power grid and benefit electricity conservation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yu-Wen Su, yuwensu@itri.org.tw; sophieywsu@gmail.com

Abstract

The continuously increasing temperatures worldwide indicate that the frequently extreme heat in summer will become a new normal. The extreme high temperature (EHT) could be dangerous to human health, especially for outdoor workers or commuters, and could increase the risk of grid collapse. Thus, the possibility of a day off due to EHT has started to be discussed in Taiwan, based on the experience of typhoon day off, but discussions have not yet concluded. In this study, the effects of the EHT day off on electricity consumption in the industrial, service, and residential sectors were investigated through two determinants: First, high temperature would increase the electricity consumption in space cooling. Second, a day off would change people’s behavior of electricity consumption from workday to nonworkday modes. Combining the effects of cooling hours and nonworkdays, the net influence of the EHT day off on electricity consumption can be evaluated. Estimated results indicated that an EHT day off can reduce aggregate electricity consumption by between 0.41% and 1.08%. The reduction of electricity consumption due to the off day offsets the increase driven by high temperatures. Thus, an EHT day off will mitigate the pressure on the power grid and benefit electricity conservation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yu-Wen Su, yuwensu@itri.org.tw; sophieywsu@gmail.com
Save