The Context of the 2018–20 “Protracted” El Niño Episode: Australian Drought and Terrestrial, Marine, and Ecophysiological Impacts

Rob Allan aMet Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Rob Allan in
Current site
Google Scholar
PubMed
Close
,
Roger Stone bCentre for Applied Climate Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia

Search for other papers by Roger Stone in
Current site
Google Scholar
PubMed
Close
,
Joëlle Gergis cFenner School of Environment and Society, Australian National University, Canberra, Australian Capital Territory, Australia
dARC Centre of Excellence for Climate Extremes, Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Joëlle Gergis in
Current site
Google Scholar
PubMed
Close
,
Zak Baillie cFenner School of Environment and Society, Australian National University, Canberra, Australian Capital Territory, Australia
dARC Centre of Excellence for Climate Extremes, Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Zak Baillie in
Current site
Google Scholar
PubMed
Close
,
Hanna Heidemann bCentre for Applied Climate Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia

Search for other papers by Hanna Heidemann in
Current site
Google Scholar
PubMed
Close
,
Nick Caputi eDepartment of Primary Industries and Regional Development, Western Australian Fisheries and Marine Research Laboratories, North Beach, Western Australia, Australia

Search for other papers by Nick Caputi in
Current site
Google Scholar
PubMed
Close
,
Rosanne D’Arrigo fLamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Rosanne D’Arrigo in
Current site
Google Scholar
PubMed
Close
, and
Christa Pudmenzky bCentre for Applied Climate Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia

Search for other papers by Christa Pudmenzky in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A “protracted” El Niño episode occurred from March–April 2018 to April–May 2020. It was manifested by the interlinked Indo-Pacific influences of two components of El Niño phases. Positive Indian Ocean dipoles (IODs) in 2018 and 2019 suppressed the formation of northwest cloud bands and southern Australia rainfall, and a persistent teleconnection, with enhanced convection generated by positive Niño-4 region sea surface temperature (SST) anomalies and strong subsidence over eastern Australia, exacerbated this Australian drought. As with “classical” El Niño–Southern Oscillation (ENSO) events, which usually last 12–18 months, protracted ENSO episodes, which last for more than 2 yr, show a similar pattern of impacts on society and the environment across the Indo-Pacific domain, and often extend globally. The second half of this study puts the impact of the 2018–20 protracted El Niño episode on both the Australian terrestrial agricultural and marine ecophysiological environments in a broader context. These impacts are often modulated not only by the direct effects of ENSO events and episodes, but by interrelated local to region ocean–atmosphere interactions and synoptic weather patterns. Even though the indices of protracted ENSO episodes are often weaker in magnitude than those of major classical ENSO events, it is the longer duration of the former that poses its own set of problems. Thus, there is an urgent need to investigate the potential to forecast protracted ENSO episodes, particularly when the mid-2020 to current 2022 period has been experiencing a major protracted La Niña episode with near-global impacts.

Significance Statement

The major 2018–20 Australian drought and its terrestrial and marine impacts were caused by a “protracted” El Niño episode, exacerbated by global warming. Indo-Pacific ocean–atmosphere interactions resulted in a persistent positive western Pacific Niño-4 sea surface temperature anomaly during the period 2018–20 and positive Indian Ocean dipoles (IODs) in 2018 and 2019. These suppressed rainfall across eastern Australia and limited northwest Australian cloud band rainfall across southern Australia. Australian agricultural and ecophysiological impacts caused by protracted El Niño–Southern Oscillation (ENSO) episodes permeate, overstress, and expose society, infrastructure, and livelihoods to longer temporal-scale pressures than those experienced during shorter “classical” ENSO events. Thus, there is an urgent need to investigate the potential to forecast protracted ENSO episodes.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Heidemann’s current affiliation: School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Melbourne, Victoria, Australia.

Corresponding author: Rob Allan, allarob@gmail.com

Abstract

A “protracted” El Niño episode occurred from March–April 2018 to April–May 2020. It was manifested by the interlinked Indo-Pacific influences of two components of El Niño phases. Positive Indian Ocean dipoles (IODs) in 2018 and 2019 suppressed the formation of northwest cloud bands and southern Australia rainfall, and a persistent teleconnection, with enhanced convection generated by positive Niño-4 region sea surface temperature (SST) anomalies and strong subsidence over eastern Australia, exacerbated this Australian drought. As with “classical” El Niño–Southern Oscillation (ENSO) events, which usually last 12–18 months, protracted ENSO episodes, which last for more than 2 yr, show a similar pattern of impacts on society and the environment across the Indo-Pacific domain, and often extend globally. The second half of this study puts the impact of the 2018–20 protracted El Niño episode on both the Australian terrestrial agricultural and marine ecophysiological environments in a broader context. These impacts are often modulated not only by the direct effects of ENSO events and episodes, but by interrelated local to region ocean–atmosphere interactions and synoptic weather patterns. Even though the indices of protracted ENSO episodes are often weaker in magnitude than those of major classical ENSO events, it is the longer duration of the former that poses its own set of problems. Thus, there is an urgent need to investigate the potential to forecast protracted ENSO episodes, particularly when the mid-2020 to current 2022 period has been experiencing a major protracted La Niña episode with near-global impacts.

Significance Statement

The major 2018–20 Australian drought and its terrestrial and marine impacts were caused by a “protracted” El Niño episode, exacerbated by global warming. Indo-Pacific ocean–atmosphere interactions resulted in a persistent positive western Pacific Niño-4 sea surface temperature anomaly during the period 2018–20 and positive Indian Ocean dipoles (IODs) in 2018 and 2019. These suppressed rainfall across eastern Australia and limited northwest Australian cloud band rainfall across southern Australia. Australian agricultural and ecophysiological impacts caused by protracted El Niño–Southern Oscillation (ENSO) episodes permeate, overstress, and expose society, infrastructure, and livelihoods to longer temporal-scale pressures than those experienced during shorter “classical” ENSO events. Thus, there is an urgent need to investigate the potential to forecast protracted ENSO episodes.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Heidemann’s current affiliation: School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Melbourne, Victoria, Australia.

Corresponding author: Rob Allan, allarob@gmail.com
Save
  • ABARES, 2020: Australian crop report. Australian Bureau of Agriculture and Resource Economics and Sciences Rep. 196, 28 pp., https://daff.ent.sirsidynix.net.au/client/en_AU/search/asset/1031061/0.

  • Abram, N. J., and Coauthors, 2021: Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ., 2, 8, https://doi.org/10.1038/s43247-020-00065-8.

    • Search Google Scholar
    • Export Citation
  • Akhir, M. F., C. Pattiaratchi, and M. Meuleners, 2020: Dynamics and seasonality of the Leeuwin Current and the surrounding counter-current system in the region south of Western Australia. J. Mar. Sci. Eng., 8, 552, https://doi.org/10.3390/jmse8080552.

    • Search Google Scholar
    • Export Citation
  • Allan, R. J., 1988: El Niño Southern Oscillation influences in the Australasian region. Prog. Phys. Geogr., 12, 313348, https://doi.org/10.1177/030913338801200301.

    • Search Google Scholar
    • Export Citation
  • Allan, R. J., 2000: ENSO and climatic variability in the past 150 years. El Niño and the Southern Oscillation: Multiscale Variability, Global and Regional Impacts, H. F. Diaz and V. Markgraf, Eds., Cambridge University Press, 3–56.

  • Allan, R. J., 2006: ENSO and related teleconnections. The Global Climate System: Pattern, Processes and Teleconnections, J. E. Oliver and H. Bridgman, Eds., Cambridge University Press, 38–53.

  • Allan, R. J., and R. D. D’Arrigo, 1999: ‘Persistent’ ENSO sequences. How unusual was the 1990-1995 El Niño? Holocene, 9, 101118, https://doi.org/10.1191/095968399669125102.

    • Search Google Scholar
    • Export Citation
  • Allan, R. J., K. Beck, and W. M. Mitchell, 1990: Sea level and rainfall correlations in Australia: Tropical links. J. Climate, 3, 838846, https://doi.org/10.1175/1520-0442(1990)003<0838:SLARCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Allan, R. J., J. A. Lindesay, and D. E. Parker, 1996: El Niño Southern Oscillation and Climatic Variability. CSIRO Publishing, 405 pp.

  • Allan, R. J., and Coauthors, 2001: Is there an Indian Ocean dipole, and is it independent of the El Niño-Southern Oscillation? CLIVAR Exchanges, Vol. 6, No. 3, International CLIVAR Project Office, Southampton, United Kingdom, 18–22, https://eprints.soton.ac.uk/19295/1/ex21.pdf.

  • Allan, R. J., C. J. C. Reason, J. A. Lindesay, and T. J. Ansell, 2003: ‘Protracted’ ENSO episodes and their impacts in the Indian Ocean region. Deep-Sea Res. II, 50, 23312347, https://doi.org/10.1016/S0967-0645(03)00059-6.

    • Search Google Scholar
    • Export Citation
  • Allan, R. J., J. Gergis, and R. D. D’Arrigo, 2019: Placing the 2014–2016 ‘protracted’ El Niño episode into a long-term context. Holocene, 30, 90105, https://doi.org/10.1177/0959683619875788.

    • Search Google Scholar
    • Export Citation
  • Arora, A., 2022: The effect of the variability of wind forcing on ENSO simulation in an OGCM: Case of canonical and protracted event. Theor. Appl. Climatol., 147, 265281, https://doi.org/10.1007/s00704-021-03816-5.

    • Search Google Scholar
    • Export Citation
  • Arora, A., and S. Kumar, 2019: What makes protracted El Niño to last longer than canonical El Niño? Theor. Appl. Climatol., 136, 587603, https://doi.org/10.1007/s00704-018-2503-8.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., and T. Yamagata, 2009: The El Niño with a difference. Nature, 461, 481484, https://doi.org/10.1038/461481a.

  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Becker, M., B. Meyssignac, C. Letetrel, W. Llovel, A. Cazenave, and T. Delcroix, 2012: Sea level variations at tropical Pacific islands since 1950. Global Planet. Change, 80–81, 8598, https://doi.org/10.1016/j.gloplacha.2011.09.004.

    • Search Google Scholar
    • Export Citation
  • Benthuysen, J. A., C. Steinberg, C. M. Spillman, and G. A. Smith, 2021: Oceanographic drivers of bleaching in the GBR: From observations to prediction. Volume 4: Observations and predictions of marine heatwaves, Report to the National Environmental Science Program. Reef and Rainforest Research Centre Limited, 48 pp., https://nesptropical.edu.au/wp-content/uploads/2021/06/4.2-Volume-4-Final-Report_COMPLETE.pdf.

  • Boer, M. M., V. Resco de Dios, and R. A. Bradstock, 2020: Unprecedented burn area of Australian mega forest fires. Nat. Climate Change, 10, 171172, https://doi.org/10.1038/s41558-020-0716-1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Search Google Scholar
    • Export Citation
  • Caputi, N., W. J. Fletcher, A. Pearce, and C. F. Chubb, 1996: Effect of the Leeuwin Current on the recruitment of fish and invertebrates along the western Australian coast. Mar. Freshwater Res., 47, 147155, https://doi.org/10.1071/MF9960147.

    • Search Google Scholar
    • Export Citation
  • Caputi, N., G. Jackson, and A. Pearce, 2014: The marine heat wave off Western Australia during the summer of 2010/11—2 years on. Fisheries Research Rep. 250, 36 pp., https://www.fish.wa.gov.au/Documents/research_reports/frr250.pdf.

  • Caputi, N., M. Kangas, A. Denham, M. Feng, A. Pearce, Y. Hetzel, and A. Chandrapavan, 2016: Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot. Ecol. Evol., 6, 35833593, https://doi.org/10.1002/ece3.2137.

    • Search Google Scholar
    • Export Citation
  • Caputi, N., M. Kangas, A. Chandrapavan, A. Hart, M. Feng, M. Marin, and S. de Lestang, 2019: Factors affecting the recovery of invertebrate stocks from the 2011 Western Australian extreme marine heatwave. Front. Mar. Sci., 6, 484, https://doi.org/10.3389/fmars.2019.00484.

    • Search Google Scholar
    • Export Citation
  • Caputi, N., A. Chandrapavan, M. Kangas, S. de Lestang, A. Hart, D. Johnston, and J. Penn, 2021: Stock-recruitment-environment relationship of invertebrate resources in Western Australia and their link to pro-active management harvest strategies. Mar. Policy, 133, 104728, https://doi.org/10.1016/j.marpol.2021.104728.

    • Search Google Scholar
    • Export Citation
  • Chandrapavan, A., N. Caputi, and M. I. Kangas, 2019: The decline and recovery of a crab population from an extreme marine heatwave and a changing climate. Front. Mar. Sci., 6, 510, https://doi.org/10.3389/fmars.2019.00510.

    • Search Google Scholar
    • Export Citation
  • Climate Prediction Center, 2020: Near real-time ocean/atmosphere: Monitoring, assessments, and prediction. Climate Diagnostics Bulletin, August 2020, NOAA/NWS, 89 pp., https://www.cpc.ncep.noaa.gov/products/CDB/CDB_Archive_pdf/PDF/CDB.aug2020_color.pdf.

  • Cobon, D. H., and N. R. Toombs, 2013: Forecasting rainfall based on the Southern Oscillation index phases at longer lead-times in Australia. Rangeland J., 35, 373383, https://doi.org/10.1071/RJ12105.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and P. D. Sardeshmukh, 2010: Removing ENSO-related variations from the climate record. J. Climate, 23, 19571978, https://doi.org/10.1175/2009JCLI2735.1.

    • Search Google Scholar
    • Export Citation
  • Crimp, S. J., B. Zheng, N. Khimashia, D. L. Gobbett, S. Chapman, M. Howden, and N. Nicholls, 2016: Recent changes in southern Australian frost occurrence: Implications for wheat production risk. Crop Pasture Sci., 67, 801811, https://doi.org/10.1071/CP16056.

    • Search Google Scholar
    • Export Citation
  • Depczynski, M., and Coauthors, 2013: Bleaching, coral mortality and subsequent survivorship on a West Australian fringing reef. Coral Reefs, 32, 233238, https://doi.org/10.1007/s00338-012-0974-0.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., C. Deser, Y. Okumura, and A. Karspeck, 2017: Predictability of 2-year La Niña events in a coupled general circulation model. Climate Dyn., 49, 42374261, https://doi.org/10.1007/s00382-017-3575-3.

    • Search Google Scholar
    • Export Citation
  • Doi, T., S.K. Behera, and T. Yamagata, 2020: Predictability of the super IOD event in 2019 and its link with El Niño Modoki. Geophys. Res. Lett., 47, e2019GL086713, https://doi.org/10.1029/2019GL086713.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., 2007: Evaluating EOF modes against a stochastic null hypothesis. Climate Dyn., 28, 517531, https://doi.org/10.1007/s00382-006-0195-8.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., 2011: An objective analysis of the observed spatial structure of the tropical Indian Ocean SST variability. Climate Dyn., 36, 21292145, https://doi.org/10.1007/s00382-010-0787-1.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., and M. Latif, 2002: A cautionary note on the interpretation of EOFs. J. Climate, 15, 216225, https://doi.org/10.1175/1520-0442(2002)015<0216:ACNOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., and M. Latif, 2003: Reply to “Comments on ‘A cautionary note on the interpretation of EOFs’.” J. Climate, 16, 10941097, https://doi.org/10.1175/1520-0442(2003)016<1094:R>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., and M. Jansen, 2009: Predictions of Indian Ocean SST indices with a simple statistical model: A null hypothesis. J. Climate, 22, 49304938, https://doi.org/10.1175/2009JCLI2846.1.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., V. Semenov, and M. Latif, 2006: Impacts of the tropical Indian and Atlantic Oceans on ENSO. Geophys. Res. Lett., 33, L11701, https://doi.org/10.1029/2006GL025871.

    • Search Google Scholar
    • Export Citation
  • Feng, M., M. J. McPhaden, S.-P. Xie, and J. Hafner, 2013: La Niña forces unprecedented Leeuwin Current warming in 2011. Sci. Rep., 3, 1277, https://doi.org/10.1038/srep01277.

    • Search Google Scholar
    • Export Citation
  • Feng, M., N. Zhang, Q. Liu, and S. Wijffels, 2018: The Indonesian Throughflow, its variability and centennial change. Geosci. Lett., 5, 3, https://doi.org/10.1186/s40562-018-0102-2.

    • Search Google Scholar
    • Export Citation
  • Feng, M., N. Caputi, A. Chandrapavan, M. Chen, A. Hart, and M. Kangas, 2021a: Multi-year marine cold-spells off the west coast of Australia and effects on fisheries. J. Mar. Syst., 214, 103473, https://doi.org/10.1016/j.jmarsys.2020.103473.

    • Search Google Scholar
    • Export Citation
  • Feng, M., Y. Zhang, H. H. Hendon, M. J. McPhaden, and A. G. Marshall, 2021b: Niño 4 west (Niño-4W) sea surface temperature variability. J. Geophys. Res. Oceans, 126, e2021JC017591, https://doi.org/10.1029/2021JC017591.

    • Search Google Scholar
    • Export Citation
  • Filkov, A. I., T. Ngo, S. Matthews, S. Telfer, and T. D. Penman, 2020: Impact of Australia’s catastrophic 2019/20 bushfire season on communities and environment. Retrospective analysis and current trends. J. Saf. Sci. Resilience, 1, 4456, https://doi.org/10.1016/j.jnlssr.2020.06.009.

    • Search Google Scholar
    • Export Citation
  • Fordyce, A. J., T. D. Ainsworth, S. F. Heron, and W. Leggat, 2019: Marine heatwave hotspots in coral reef environments: Physical drivers, ecophysiological outcomes, and impact upon structural complexity. Front. Mar. Sci., 6, 498, https://doi.org/10.3389/fmars.2019.00498.

    • Search Google Scholar
    • Export Citation
  • Fraser, M. W., G. A. Kendrick, J. Statton, R. K. Hovey, A. Zavala-Perez, and D. I. Walker, 2014: Extreme climate events lower resilience of foundation seagrass at edge of biogeographical range. J. Ecol., 102, 15281536, https://doi.org/10.1111/1365-2745.12300.

    • Search Google Scholar
    • Export Citation
  • Frauen, C., and D. Dommenget, 2012: Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys. Res. Lett., 39, L02706, https://doi.org/10.1029/2011GL050520.

    • Search Google Scholar
    • Export Citation
  • Frölicher, T. L., and C. Laufkötter, 2018: Emerging risks from marine heat waves. Nat. Commun., 9, 650, https://doi.org/10.1038/s41467-018-03163-6.

    • Search Google Scholar
    • Export Citation
  • Gao, Z., Z.-Z. Hu, F. Zheng, X. Li, S. Li, and B. Zhang, 2023: Single-year and double-year El Niños. Climate Dyn., 60, 22352243, https://doi.org/10.1007/s00382-022-06425-8.

    • Search Google Scholar
    • Export Citation
  • Gergis, J. L., and A. M. Fowler, 2009: A history of ENSO events since A.D. 1525: Implications for future climate change. Climatic Change, 92, 343387, https://doi.org/10.1007/s10584-008-9476-z.

    • Search Google Scholar
    • Export Citation
  • Hannachi, A., and D. Dommenget, 2009: Is the Indian Ocean SST variability is a homogeneous diffusion process? Climate Dyn., 33, 535547, https://doi.org/10.1007/s00382-008-0512-5.

    • Search Google Scholar
    • Export Citation
  • Harris, S., and C. Lucas, 2019: Understanding the variability of Australian fire weather between 1973 and 2017. PLOS ONE, 14, e0222328, https://doi.org/10.1371/journal.pone.0222328.

    • Search Google Scholar
    • Export Citation
  • Heidemann, H., and J. Ribbe, 2019: Marine heat waves and the influence of El Niño off southeast Queensland, Australia. Front. Mar. Sci., 6, 56, https://doi.org/10.3389/fmars.2019.00056.

    • Search Google Scholar
    • Export Citation
  • Hobday, A. J., and G. T. Pecl, 2014: Identification of global marine hotspots: Sentinels for change and vanguards for adaptation action. Rev. Fish Biol. Fish., 24, 415425, https://doi.org/10.1007/s11160-013-9326-6.

    • Search Google Scholar
    • Export Citation
  • Hobday, A. J., D. Smale, K. Smith, and T. Wernberg, 2021: How much do marine heatwaves cost? The economic losses amount to billions and billions of dollars. The Conversation, https://theconversation.com/how-much-do-marine-heatwaves-cost-the-economic-losses-amount-to-billions-and-billions-of-dollars-170008#:∼:text=Another%20heatwave%20in%20Shark%20Bay,when%20seagrass%20beds%20were%20impacted.

  • Holbrook, N. J., and Coauthors, 2019: A global assessment of marine heatwaves and their drivers. Nat. Commun., 10, 2624, https://doi.org/10.1038/s41467-019-10206-z.

    • Search Google Scholar
    • Export Citation
  • Holbrook, N. J., A. S. Gupta, E. C. J. Oliver, A. J. Hobday, J. A. Benthuysen, H. A. Scannell, D. A. Smale, and T. Wernberg, 2020: Keeping pace with marine heatwaves. Nat. Rev. Earth Environ., 1, 482493, https://doi.org/10.1038/s43017-020-0068-4.

    • Search Google Scholar
    • Export Citation
  • Howden, M., S. Schroeter, S. Crimp, and I. Hanigan, 2014: The changing roles of science in managing Australian droughts: An agricultural perspective. Wea. Climate Extremes, 3, 8089, https://doi.org/10.1016/j.wace.2014.04.006.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, Y. Xue, and B. Jha, 2014: Why were some La Niñas followed by another La Niña? Climate Dyn., 42, 10291042, https://doi.org/10.1007/s00382-013-1917-3.

    • Search Google Scholar
    • Export Citation
  • Joll, L. M., and N. Caputi, 1995: Environmental influences on recruitment in the saucer scallop (Amusium balloti) fishery of Shark Bay, Western Australia. ICES Mar. Sci. Symp., 199, 4753, https://doi.org/10.17895/ices.pub.19271372.

    • Search Google Scholar
    • Export Citation
  • Kajtar, J. B., N. J. Holbrook, and V. Hernaman, 2021: A catalogue of marine heatwave metrics and trends for the Australian region. J. South. Hemisphere Earth Syst. Sci., 71, 284302, https://doi.org/10.1071/ES21014.

    • Search Google Scholar
    • Export Citation
  • Kamenos, N. A., and S. J. Hennige, 2018: Reconstructing four centuries of temperature-induced coral bleaching on the Great Barrier Reef. Front. Mar. Sci., 5, 283, https://doi.org/10.3389/fmars.2018.00283.

    • Search Google Scholar
    • Export Citation
  • Kangas, M., S. Wilkin, N. Breheny, P. Cavalli, G. Grounds, and S. Brown, 2021: Saucer scallops resource status report 2021. Status Reports of the Fisheries and Aquatic Resources of Western Australia 2020/21: The State of the Fisheries, S. J. Newman et al., Eds., Department of Primary Industries and Regional Development, 96–102.

  • Krishnamurthy, V., and B. P. Kirtman, 2003: Variability of the Indian Ocean: Relation to monsoon and ENSO. Quart. J. Roy. Meteor. Soc., 129, 16231646, https://doi.org/10.1256/qj.01.166.

    • Search Google Scholar
    • Export Citation
  • Le Nohaïc, M., C. L. Ross, C. E. Cornwall, S. Comeau, R. Lowe, M. T. McCulloch, and V. Schoepf, 2017: Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia. Sci. Rep., 7, 14999, https://doi.org/10.1038/s41598-017-14794-y.

    • Search Google Scholar
    • Export Citation
  • Li, X., Z.-Z. Hu, Y.-H. Tseng, Y. Liu, and P. Liang, 2022: A historical perspective of the La Niña event in 2020/2021. J. Geophys. Res. Atmos., 127, e2021JD035546, https://doi.org/10.1029/2021JD035546.

    • Search Google Scholar
    • Export Citation
  • Lowe, R. J., M. V. W. Cuttler, and J. E. Hansen, 2021: Climatic drivers of extreme sea level events along the coastline of Western Australia. Earth’s Future, 9, e2020EF001620, https://doi.org/10.1029/2020EF001620.

    • Search Google Scholar
    • Export Citation
  • McGowan, H., and A. Theobald, 2017: ENSO weather and coral bleaching on the Great Barrier Reef, Australia. Geophys. Res. Lett., 44, 10 60110 607, https://doi.org/10.1002/2017GL074877.

    • Search Google Scholar
    • Export Citation
  • Meinke, H., P. deVoil, G. L. Hammer, S. Power, R. Allan, R. C. Stone, C. Folland, and A. Potgieter, 2005: Rainfall variability at decadal and longer time scales: Signal or noise? J. Climate, 18, 8996, https://doi.org/10.1175/JCLI-3263.1.

    • Search Google Scholar
    • Export Citation
  • Molony, B. W., D. P. Thomson, and M. Feng, 2021: What can we learn from the 2010/11 Western Australian marine heatwave to better understand risks from the one forecast in 2020/21? Front. Mar. Sci., 8, 645383, https://doi.org/10.3389/fmars.2021.645383.

    • Search Google Scholar
    • Export Citation
  • Muis, S., I. D. Haigh, G. Guimarães Nobre, J. C. J. H. Aerts, and P. J. Ward, 2018: Influence of El Niño-Southern Oscillation on global coastal flooding. Earth’s Future, 6, 13111322, https://doi.org/10.1029/2018EF000909.

    • Search Google Scholar
    • Export Citation
  • National Operations Centre Tidal Unit, 2022: The Australian Baseline Sea Level Monitoring Project Monthly Data Report—June 2022, Bureau of Meteorology, 31 pp., http://www.bom.gov.au/ntc/IDO60201/IDO60201.202206.pdf.

  • Newman, M., A. T. Wittenberg, L. Cheng, G. P. Compo, and C. A. Smith, 2018: The extreme 2015/16 El Niño, in the context of historical climate variability and change. Bull. Amer. Meteor. Soc., 99, S16S20, https://doi.org/10.1175/BAMS-D-17-0116.1.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 58265843, https://doi.org/10.1175/2010JCLI3592.1.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., M. Ohba, C. Deser, and H. Ueda, 2011: A proposed mechanism for the asymmetric duration of El Niño and La Niña. J. Climate, 24, 38223829, https://doi.org/10.1175/2011JCLI3999.1.

    • Search Google Scholar
    • Export Citation
  • Oliver, E. C. J., J. A. Benthuysen, N. L. Bindoff, A. J. Hobday, N. J. Holbrook, C. N. Mundy, and S. E. Perkins-Kirkpatrick, 2017: The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun., 8, 16101, https://doi.org/10.1038/ncomms16101.

    • Search Google Scholar
    • Export Citation
  • Oliver, E. C. J., J. A. Benthuysen, S. Darmaraki, M. G. Donat, A. J. Hobday, N. J. Holbrook, R. W. Schlegel, and A. Sen Gupta, 2021: Marine heatwaves. Annu. Rev. Mar. Sci., 13, 313342, https://doi.org/10.1146/annurev-marine-032720-095144.

    • Search Google Scholar
    • Export Citation
  • Pearce, A. F., and B. F. Phillips, 1988: ENSO events, the Leeuwin Current, and larval recruitment of the western rock lobster. ICES J. Mar. Sci., 45, 1321, https://doi.org/10.1093/icesjms/45.1.13.

    • Search Google Scholar
    • Export Citation
  • Pearce, A. F., and M. Feng, 2007: Observations of warming on the Western Australian continental shelf. Mar. Freshwater Res., 58, 914920, https://doi.org/10.1071/MF07082.

    • Search Google Scholar
    • Export Citation
  • Pearce, A. F., and M. Feng, 2013: The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/11. J. Mar. Syst., 111–112, 139156, https://doi.org/10.1016/j.jmarsys.2012.10.009.

    • Search Google Scholar
    • Export Citation
  • Pearce, A. F., R. Lenanton, G. Jackson, J. Moore, M. Feng, and D. Gaughan, 2011: The “marine heat wave” off western Australia during the summer of 2010/11. Fisheries Research Rep. 222, 36 pp., https://www.fish.wa.gov.au/documents/research_reports/frr222.pdf.

  • Queensland Alliance for Agriculture and Food Innovation, 2019: Crop outlook. University of Queensland and Queensland Government, https://qaafi.uq.edu.au/industry/crop-outlook.

  • Reid, K. J., I. Simmonds, C. L. Vincent, and A. D. King, 2019: The Australian northwest cloudband: Climatology, mechanisms, and association with precipitation. J. Climatol., 32, 66656684, https://doi.org/10.1175/JCLI-D-19-0031.1.

    • Search Google Scholar
    • Export Citation
  • Risbey, J. S., M. J. Pook, P. C. McIntosh, M. C. Wheeler, and H. H. Hendon, 2009: On the remote drivers of rainfall variability in Australia. Mon. Wea. Rev., 137, 32333253, https://doi.org/10.1175/2009MWR2861.1.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Search Google Scholar
    • Export Citation
  • Schlegel, R. W., E. C. J. Oliver, T. Wernberg, and A. J. Smit, 2017: Nearshore and offshore co-occurrence of marine heatwaves and cold-spells. Prog. Oceanogr., 151, 189205, https://doi.org/10.1016/j.pocean.2017.01.004.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., and Coauthors, 2020: Drivers and impacts of the most extreme marine heatwave events. Sci. Rep., 10, 19359, https://doi.org/10.1038/s41598-020-75445-3.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M. S., G. M. McKeon, I. W. Watson, B. K. Henry, G. S. Stone, W. B. Hall, and S. M. Howden, 2007: Learning from episodes of degradation and recovery in variable Australian rangelands. Proc. Natl. Acad. Sci., 104, 20 69020 695, https://doi.org/10.1073/pnas.0704837104.

    • Search Google Scholar
    • Export Citation
  • Smith K. E., M. T. Burrows, A. J. Hobday, A. Sen Gupta, P. J. Moore, M. Thomsen, T. Wernberg, and D. A. Smale, 2021: Socioeconomic impacts of marine heatwaves: Global issues and opportunities. Science, 374, eabj3593, https://doi.org/10.1126/science.abj3593.

    • Search Google Scholar
    • Export Citation
  • Sprogis, K. R., F. Christiansen, M. Wandres, and L. Bejder, 2018: El Niño Southern Oscillation influences the abundance and movements of a marine top predator in coastal waters. Global Change Biol., 24, 10851096, https://doi.org/10.1111/gcb.13892.

    • Search Google Scholar
    • Export Citation
  • Stone, R. C., G. L. Hammer, and T. Marcussen, 1996: Prediction of global rainfall probabilities using phases of the Southern Oscillation index. Nature, 384, 252255, https://doi.org/10.1038/384252a0.

    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., A. Timmermann, F.-F. Jin, Y. Chikamoto, W. Zhang, A. T. Wittenberg, E. Widiasih, and S. Zhao, 2017: Revisiting ENSO/Indian Ocean dipole phase relationships. Geophys. Res. Lett., 44, 24812492, https://doi.org/10.1002/2016GL072308.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Search Google Scholar
    • Export Citation
  • Tourre, Y. M., B. Rajagopalan, Y. Kushnir, M. Barlow, and W. B. White, 2001: Patterns of coherent decadal and interdecadal climate signals in the Pacific basin during the 20th century. Geophys. Res. Lett., 28, 20692072, https://doi.org/10.1029/2000GL012780.

    • Search Google Scholar
    • Export Citation
  • Turkington, T., B. Timbal, and R. Rahmat, 2019: The impact of global warming on sea surface temperature based El Niño–Southern Oscillation monitoring indices. Int. J. Climatol., 39, 10921103, https://doi.org/10.1002/joc.5864.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2019: Three-ocean interactions and climate variability: A review and perspective. Climate Dyn., 53, 51195136, https://doi.org/10.1007/s00382-019-04930-x.

    • Search Google Scholar
    • Export Citation
  • Wang, G., and W. Cai, 2020: Two-year consecutive concurrences of positive Indian Ocean dipole and central Pacific El Niño preconditioned the 2019/2020 Australian “black summer” bushfires. Geosci. Lett., 7, 19, https://doi.org/10.1186/s40562-020-00168-2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., L. V. Alexander, J. B. Kajtar, G. Semolini Pilo, and N. J. Holbrook, 2020: Understanding the changing nature of marine cold spells. Bachelor of Marine and Antarctic Science (Honours) thesis, University of Tasmania, 54 pp.

  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, https://doi.org/10.1038/43848.

    • Search Google Scholar
    • Export Citation
  • Weng, H., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29, 113129, https://doi.org/10.1007/s00382-007-0234-0.

    • Search Google Scholar
    • Export Citation
  • Wernberg, T., D. A. Smale, F. Tuya, M. S. Thomsen, T. J. Langlois, T. de Bettignies, S. Bennett, and C. S. Rousseaux, 2013: An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Climate Change, 3, 7882, https://doi.org/10.1038/nclimate1627.

    • Search Google Scholar
    • Export Citation
  • White, W. B., and Y. M. Tourre, 2007: A delayed action oscillator shared by the ENSO and QDO in the Indian Ocean. J. Oceanogr., 63, 223241, https://doi.org/10.1007/s10872-007-0024-7.

    • Search Google Scholar
    • Export Citation
  • Wittwer, G., and R. Waschik, 2021: Estimating the economic impacts of the 2017–2019 drought and 2019–2020 bushfires on regional NSW and the rest of Australia. Aust. J. Agric. Resour. Econ., 65, 918936, https://doi.org/10.1111/1467-8489.12441.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., W. Mao, F. Jiang, M. F. Stuecker, F.-F. Jin, and L. Qi, 2021: Tropical Indo-Pacific compounding thermal conditions drive the 2019 Australian extreme drought. Geophys. Res. Lett., 48, e2020GL090323, https://doi.org/10.1029/2020GL090323.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., and J. A. Church, 2012: Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophys. Res. Lett., 39, L21701, https://doi.org/10.1029/2012GL053240.

    • Search Google Scholar
    • Export Citation
  • Zhao, Y., and S. Nigam, 2015: The Indian Ocean dipole: A monopole in SST. J. Climate, 28, 319, https://doi.org/10.1175/JCLI-D-14-00047.1.

    • Search Google Scholar
    • Export Citation
  • Zinke, J., A. Rountrey, M. Feng, S.-P. Xie, D. Dissard, K. Rankenburg, J. M. Lough, and M.T. McCulloch, 2014: Corals record long-term Leeuwin Current variability including Ningaloo El Niño/La Niña since 1795. Nat. Commun., 5, 3607, https://doi.org/10.1038/ncomms4607.

    • Search Google Scholar
    • Export Citation
  • Zinke, J., and Coauthors, 2015: Coral record of southeast Indian Ocean marine heatwaves with intensified western Pacific temperature gradient. Nat. Commun., 6, 8562, https://doi.org/10.1038/ncomms9562.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 919 743 24
Full Text Views 116 107 2
PDF Downloads 115 103 2