Abstract
Although scientists agree that climate change is anthropogenic, differing interpretations of evidence in a highly polarized sociopolitical environment impact how individuals perceive climate change. While prior work suggests that individuals experience climate change through local conditions, there is a lack of consensus on how personal experience with extreme precipitation may alter public opinion on climate change. We combine high-resolution precipitation data at the zip-code level with nationally representative public opinion survey results (n = 4008) that examine beliefs in climate change and the perceived cause. Our findings support relationships between well-established value systems (i.e., partisanship, religion) and socioeconomic status with individual opinions of climate change, showing that these values are influential in opinion formation on climate issues. We also show that experiencing characteristics of atypical precipitation (e.g., more variability than normal, increasing or decreasing trends, or highly recurring extreme events) in a local area are associated with increased belief in anthropogenic climate change. This suggests that individuals in communities that experience greater atypical precipitation may be more accepting of messaging and policy strategies directly aimed at addressing climate change challenges. Thus, communication strategies that leverage individual perception of atypical precipitation at the local level may help tap into certain “experiential” processing methods, making climate change feel less distant. These strategies may help reduce polarization and motivate mitigation and adaptation actions.
Significance Statement
Public acceptance for anthropogenic climate change is hindered by how related issues are presented, diverse value systems, and information-processing biases. Personal experiences with extreme weather may act as a salient cue that impacts individuals’ perceptions of climate change. We couple a large, nationally representative public opinion dataset with station precipitation data at the zip-code level in the United States. Results are nuanced but suggest that anomalous and variable precipitation in a local area may be interpreted as evidence for anthropogenic climate change. So, relating atypical local precipitation conditions to climate change may help tap into individuals’ experiential processing, sidestep polarization, and tailor communications at the local level.
© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).