Rising Dewpoint Temperature and Mosquito-Borne Disease in the Caribbean

Mark R. Jury Department of Physics, University of Puerto Rico Mayaguez, Puerto Rico
Department of Geography, University of Zululand, KwaDlangezwa, South Africa

Search for other papers by Mark R. Jury in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6871-403X
Restricted access

Abstract

The sensitivity of mosquito-borne disease in Puerto Rico is studied in relation to dewpoint temperature Td, wind velocity, and other climate fields across the Caribbean since 1979. Weekly reported clinically diagnosed cases, largely contributed by dengue, are analyzed for the seasonal cycle that crests from July to October. Monthly clinically diagnosed cases are summed into annual statistics for comparison with dewpoint temperature assimilated by the European Reanalysis v5. Correlation mapping illustrates that annually summed case numbers in Puerto Rico tend to spike at 3–6-yr intervals when dewpoint temperatures are above normal in spring and cloud fraction is below normal in late summer. Statistical analysis with tropical east Pacific sea surface temperatures indicates that high case numbers or epidemics follow 6–9 months after El Niño. Composite atmospheric circulations were mapped for the top 10 years with high case numbers, and sharp spatial gradients of coastal Td and wind were analyzed to explain how capital cities experience localized outbreaks. Long-term trends in dewpoint temperature are markedly upward at +0.2°C yr−1, and the 22°C Td threshold has surrounded the Antilles Islands under the influence of global warming. Mosquito-borne virus infections are likely to increase in the future, but the statistical outcomes reported here make it possible to anticipate epidemics and constrain health impacts.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mark R. Jury, mark.jury@upr.edu

Abstract

The sensitivity of mosquito-borne disease in Puerto Rico is studied in relation to dewpoint temperature Td, wind velocity, and other climate fields across the Caribbean since 1979. Weekly reported clinically diagnosed cases, largely contributed by dengue, are analyzed for the seasonal cycle that crests from July to October. Monthly clinically diagnosed cases are summed into annual statistics for comparison with dewpoint temperature assimilated by the European Reanalysis v5. Correlation mapping illustrates that annually summed case numbers in Puerto Rico tend to spike at 3–6-yr intervals when dewpoint temperatures are above normal in spring and cloud fraction is below normal in late summer. Statistical analysis with tropical east Pacific sea surface temperatures indicates that high case numbers or epidemics follow 6–9 months after El Niño. Composite atmospheric circulations were mapped for the top 10 years with high case numbers, and sharp spatial gradients of coastal Td and wind were analyzed to explain how capital cities experience localized outbreaks. Long-term trends in dewpoint temperature are markedly upward at +0.2°C yr−1, and the 22°C Td threshold has surrounded the Antilles Islands under the influence of global warming. Mosquito-borne virus infections are likely to increase in the future, but the statistical outcomes reported here make it possible to anticipate epidemics and constrain health impacts.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mark R. Jury, mark.jury@upr.edu
Save
  • Alvarez-Valencia, A., J. L. Colón-Perez, M. R. Jury, and H. J. Jiménez, 2024: Meteorological modulation of atmospheric boundary layer height over a Caribbean island. Atmosphere, 15, 1007, https://doi.org/10.3390/atmos15081007.

    • Search Google Scholar
    • Export Citation
  • Amarakoon, D., A. Chen, S. Rawlins, D. D. Chadee, M. Taylor, and R. Stennett, 2008: Dengue epidemics in the Caribbean- Temperature indices to gauge the potential for onset of dengue. Mitigation Adapt. Strategies Global Change, 13, 341357, https://doi.org/10.1007/s11027-007-9114-5.

    • Search Google Scholar
    • Export Citation
  • Atlas Caribe, 2024: Tourism travel statistics. Accessed 15 March 2024, atlas-caraibe.certic.unicaen.fr/en/.

  • Barrera, R., M. Amador, and A. J. Mackay, 2011: Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico. PLOS Neglected Trop. Dis., 5, e1378, https://doi.org/10.1371/journal.pntd.0001378.

    • Search Google Scholar
    • Export Citation
  • Caribbean Epidemiology Center, 2002: Report of the disease surveillance unit, Trinidad. Dept of Health, 10 pp., https://iris.paho.org/handle/10665.2/31172.

    • Search Google Scholar
    • Export Citation
  • CDC, 2024: Database. Accessed 15 February 2024, https://www.cdc.gov/dengue/statistics-maps/historic-data.html.

  • Chadee, D. D., B. Shivnauth, S. C. Rawlins, and A. A. Chen, 2006: Climate, mosquito indices and the epidemiology of dengue fever in Trinidad (2002–2004). Ann. Trop. Med. Parasitol., 100, 6977, https://doi.org/10.1179/136485907x157059.

    • Search Google Scholar
    • Export Citation
  • Chen, A. A., and M. A. Taylor, 2002: Investigating the link between early season Caribbean rainfall and the El Nino + 1 year. Int. J. Climatol., 22, 87106, https://doi.org/10.1002/joc.711.

    • Search Google Scholar
    • Export Citation
  • Depradine, C., and E. Lovell, 2004: Climatological variables and the incidence of dengue fever in Barbados. Int. J. Environ. Health Res., 14, 429441, https://doi.org/10.1080/09603120400012868.

    • Search Google Scholar
    • Export Citation
  • Focks, D. A., and R. Barrera, 2007: Dengue transmission dynamics: Assessment and implications for control. Scientific Working Group Report on Dengue, WMO Working Paper 6.1, 92109.

  • Focks, D. A., E. Daniels, D. G. Haile, and J. E. Keesling, 1995: A simulation model of the epidemiology of urban dengue fever: Literature analysis, model development, preliminary validation, and samples of simulation results. Amer. J. Trop. Med. Hyg., 53, 489506, https://doi.org/10.4269/ajtmh.1995.53.489.

    • Search Google Scholar
    • Export Citation
  • Freitas, A., H. S. Rodrigues, N. Martins, A. Iutis, M. A. Robert, D. Herrera, and M. Colomé-Hidalgo, 2023: Multiplicative mixed-effects modelling of dengue incidence: An analysis of the 2019 outbreak in the Dominican Republic. Axioms, 12, 150, https://doi.org/10.3390/axioms12020150.

    • Search Google Scholar
    • Export Citation
  • Gagnon, A. S., A. B. G. Bush, and K. E. Smoyer-Tomic, 2001: Dengue epidemics and the El Nino Southern Oscillation. Climate Res., 19, 3543, https://doi.org/10.3354/cr019035.

    • Search Google Scholar
    • Export Citation
  • Hales, S., N. de Wet, J. Maindonald, and A. Woodward, 2002: Potential effect of population and climate changes on global distribution of dengue fever: An empirical model. Lancet, 360, 830834, https://doi.org/10.1016/S0140-6736(02)09964-6.

    • Search Google Scholar
    • Export Citation
  • Henry, S., and F. d. A. Mendonça, 2020: Past, present, and future vulnerability to dengue in Jamaica: A spatial analysis of monthly variations. Int. J. Environ. Res. Public Health, 17, 3156, https://doi.org/10.3390/ijerph17093156.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Heslop-Thomas, C., W. Bailey, D. Amarakoon, and Coauthors, 2006: Vulnerability to dengue fever in Jamaica. AIACC Paper 27, 42 pp., https://www.start.org/Projects/AIACC_Project/working_papers/Working%20Papers/AIACC_WP27_Heslop-Thomas.pdf.

  • Jury, M. R., 2008: Climate influence on dengue epidemics in Puerto Rico. Int. J. Environ Health, 18, 323334, https://doi.org/10.1080/09603120701849836.

    • Search Google Scholar
    • Export Citation
  • Jury, M. R., 2014: Zonal gradients in the lower atmosphere and upper ocean across the windward Antilles during midsummer 2012. J. Appl. Meteor. Climatol., 53, 731741, https://doi.org/10.1175/JAMC-D-13-0103.1.

    • Search Google Scholar
    • Export Citation
  • Jury, M. R., 2023: Springtime Southwest cloud bands in the central Caribbean. J. Appl. Meteor. Climatol., 62, 251262, https://doi.org/10.1175/JAMC-D-22-0126.1.

    • Search Google Scholar
    • Export Citation
  • Jury, M. R., 2024: Inter-America meridional circulation and boreal summer climate. Theor. Appl. Climatol., 155, 81398150, https://doi.org/10.1007/s00704-024-05115-1.

    • Search Google Scholar
    • Export Citation
  • Jury, M. R., and A. D. Kanemba, 2007: A climate-based model for malaria prediction in southeastern Africa. S. Afr. J. Sci., 103, 5762.

    • Search Google Scholar
    • Export Citation
  • Koopman, J. S., D. R. Prevots, M. A. Vaca Marin, H. Gomez Dantes, M. L. Zarate Aquino, I. M. Longini Jr., and J. Sepulveda Amor, 1991: Determinants and predictors of dengue infection in Mexico. Amer. J. Epidemiol., 133, 11681178, https://doi.org/10.1093/oxfordjournals.aje.a115829.

    • Search Google Scholar
    • Export Citation
  • Li, Z., H. Gurgel, L. Xu, L. Yang, and J. Dong, 2022: Improving dengue forecasts by using geospatial big data analysis in Google Earth engine and the historical dengue information-aided long short term memory modeling. Biology, 11, 169, https://doi.org/10.3390/biology11020169.

    • Search Google Scholar
    • Export Citation
  • Martens, W. J. M., T. H. Jetten, and D. A. Focks, 1997: Sensitivity of malaria, schistosomiasis and dengue to global warming. Climate Change, 35, 145156, https://doi.org/10.1023/A:1005365413932.

    • Search Google Scholar
    • Export Citation
  • Matysiak, A., and A. Roess, 2017: Interrelationship between climatic, ecologic, social, and cultural determinants affecting dengue emergence and transmission in Puerto Rico and their implications for Zika response. J. Trop. Med., 2017, 8947067, https://doi.org/10.1155/2017/8947067.

    • Search Google Scholar
    • Export Citation
  • Morin, C. W., A. J. Monaghan, M. H. Hayden, R. Barrera, and K. Ernst, 2015: Meteorologically driven simulations of dengue epidemics in San Juan, PR. PLOS Neglected Trop. Dis., 9, e0004002, https://doi.org/10.1371/journal.pntd.0004002.

    • Search Google Scholar
    • Export Citation
  • Muñoz, Á. G., X. Chourio, A. Rivière-Cinnamond, M. A. Diuk-Wasser, P. A. Kache, E. A. Mordecai, L. Harrington, and M. C. Thomson, 2020: AeDES: A next-generation monitoring and forecasting system for environmental suitability of Aedes-borne disease transmission. Sci. Rep., 10, 12640, https://doi.org/10.1038/s41598-020-69625-4.

    • Search Google Scholar
    • Export Citation
  • PanAmerican Health Organization, 2024: Regional Health Data in the Americas. Accessed 15 August 2024, https://www3.paho.org/data/index.php/.

    • Search Google Scholar
    • Export Citation
  • Pascoe, L., T. Clemen, K. Bradshaw, and D. Nyambo, 2022: Review of importance of weather and environmental variables in agent-based arbovirus models. Int. J. Environ. Res. Public Health, 19, 15578, https://doi.org/10.3390/ijerph192315578.

    • Search Google Scholar
    • Export Citation
  • Patz, J. A., W. J. Martens, D. A. Focks, and T. H. Jetten, 1998: Dengue fever epidemic potential as projected by general circulation models of global climate change. Environ. Health Perspect., 106, 147153, https://doi.org/10.1289/ehp.98106147.

    • Search Google Scholar
    • Export Citation
  • Pérez-Guerra, C. L., E. Zielinski-Gutierrez, D. Vargas-Torres, and G. G. Clark, 2009: Community beliefs and practices about dengue in Puerto Rico. Revista Panam. Salud Publica, 25, 218226, https://doi.org/10.1590/s1020-49892009000300005.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., and Coauthors, 2002: Recent changes in climate extremes in the Caribbean region. J. Geophys. Res., 107, 4601, https://doi.org/10.1029/2002JD002251.

    • Search Google Scholar
    • Export Citation
  • Petrone, M. E., R. Earnest, J. Lourenço, M. U. G. Kraemer, R. Paulino-Ramirez, N. D. Grubaugh, and L. Tapia, 2021: Asynchronicity of endemic and emerging mosquito-borne disease outbreaks in the Dominican Republic. Nat. Commun., 12, 151, https://doi.org/10.1038/s41467-020-20391-x.

    • Search Google Scholar
    • Export Citation
  • Poveda, G., and Coauthors, 2000: Climate and ENSO variability associated with vector-borne diseases in Colombia. El Nino and the Southern Oscillation: Multiscale Variability and Global to Regional Impacts, H. F. Diaz and V. Markgraf, Eds., Cambridge University Press, 183204.

    • Search Google Scholar
    • Export Citation
  • Rigau-Pérez, J. G., A. V. Vorndam, and G. C. Clark, 2001: The dengue and dengue hemorrhagic fever epidemic in Puerto Rico, 1994–1995. Amer. J. Trop. Med. Hyg., 64, 6774, https://doi.org/10.4269/ajtmh.2001.64.67.

    • Search Google Scholar
    • Export Citation
  • Robert, M. A., and Coauthors, 2023: Spatiotemporal and meteorological relationships in dengue transmission in the Dominican Republic 2015–2019. Trop. Med. Health, 2, 32, https://doi.org/10.1186/s41182-023-00517-9.

    • Search Google Scholar
    • Export Citation
  • Ryff, K. R., and Coauthors, 2023: Epidemiologic trends of dengue in U.S. Territories, 2010–2020. MMWR. Surveill. Summ., 72 (4), 112, https://doi.org/10.15585/mmwr.ss7204a1.

    • Search Google Scholar
    • Export Citation
  • Serman, E. A., 2017: Identifying regional climatic and human influences on dengue fever transmission in Puerto Rico. MS Thesis, Civil and Environmental Engineering, University of Rhode Island, 68 pp., digitalcommons.uri.edu/theses/1093.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. F., and M. J. Nelson, 1981: Registro de altitude del Aedes Aegypti en Colombia. Biomedica, 225.

  • Sharp, T. M., E. Hunsperger, J. L. Muñoz-Jordán, H. S. Margolis, and K. M. Tomashek, 2014: Sequential episodes of dengue—Puerto Rico, 2005–2010. Amer. J. Trop. Med. Hyg., 91, 235239, https://doi.org/10.4269/ajtmh.13-0742.

    • Search Google Scholar
    • Export Citation
  • Thai, K. T. D., and K. L. Anders, 2011: The role of climate variability and change in the transmission dynamics and geographic distribution of dengue. Exp. Biol. Med., 236, 944954, https://doi.org/10.1258/ebm.2011.010402.

    • Search Google Scholar
    • Export Citation
  • Valdes, K., M. Alvarez, M. Pupo, and M. G. Guzmán, 2000: Human dengue antibodies against structural and nonstructural proteins. Clin. Diagn. Lab. Immunol., 7, 856857, https://doi.org/10.1128/cdli.7.5.856-857.2000.

    • Search Google Scholar
    • Export Citation
  • Watts, D. M., D. S. Burke, B. A. Harrison, R. E. Whitmire, and A. Nisalak, 1987: Effect of temperature on the vector efficiency of Aedes aegypti dengue 2 virus. Amer. J. Trop. Med. Hyg., 36, 143152, https://doi.org/10.4269/ajtmh.1987.36.143.

    • Search Google Scholar
    • Export Citation
  • Wilson, M. L., 2001: Ecology and infectious disease. Ecosystem Change and Public Health, J. Aron and J. Patz, Eds., John Hopkins University Press, 283324.

    • Search Google Scholar
    • Export Citation
  • World Health Organization, 2020: Fact sheet. Accessed 15 March 2024, www.who.int/news-room/fact-sheets/detail/vector-borne-diseases.

All Time Past Year Past 30 Days
Abstract Views 73 73 73
Full Text Views 90 90 34
PDF Downloads 73 73 41