Observed and Projected Future Shifts of Climatic Zones in Europe and Their Use to Visualize Climate Change Information

Kirsti Jylhä Finnish Meteorological Institute, Helsinki, Finland

Search for other papers by Kirsti Jylhä in
Current site
Google Scholar
PubMed
Close
,
Heikki Tuomenvirta Finnish Meteorological Institute, Helsinki, Finland

Search for other papers by Heikki Tuomenvirta in
Current site
Google Scholar
PubMed
Close
,
Kimmo Ruosteenoja Finnish Meteorological Institute, Helsinki, Finland

Search for other papers by Kimmo Ruosteenoja in
Current site
Google Scholar
PubMed
Close
,
Hanna Niemi-Hugaerts Finnish Meteorological Institute, Helsinki, Finland

Search for other papers by Hanna Niemi-Hugaerts in
Current site
Google Scholar
PubMed
Close
,
Krista Keisu Finnish Meteorological Institute, Helsinki, Finland

Search for other papers by Krista Keisu in
Current site
Google Scholar
PubMed
Close
, and
Juha A. Karhu Finnish Meteorological Institute, Helsinki, Finland

Search for other papers by Juha A. Karhu in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A Web site questionnaire survey in Finland suggested that maps illustrating projected shifts of Köppen climatic zones are an effective visualization tool for disseminating climate change information. The climate classification is based on seasonal cycles of monthly-mean temperature and precipitation, and it divides Europe and its adjacent land areas into tundra, boreal, temperate, and dry climate types. Projections of future changes in the climatic zones were composed using multimodel mean projections based on simulations performed with 19 global climate models. The projections imply that, depending on the greenhouse gas scenarios, about half or possibly even two-thirds of the study domain will be affected by shifts toward a warmer or drier climate type during this century. The projected changes within the next few decades are chiefly located near regions where shifts in the borders of the zones have already occurred during the period 1950–2006. The questionnaire survey indicated that the information regarding the shifting climatic zones as disseminated by the maps was generally interpreted correctly, with the average percentage of correct answers being 86%. Additional examples of the use of the climatic zones to communicate climate change information to the public are included.

Corresponding author address: Kirsti Jylhä, Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland. Email: kirsti.jylha@fmi.fi

Abstract

A Web site questionnaire survey in Finland suggested that maps illustrating projected shifts of Köppen climatic zones are an effective visualization tool for disseminating climate change information. The climate classification is based on seasonal cycles of monthly-mean temperature and precipitation, and it divides Europe and its adjacent land areas into tundra, boreal, temperate, and dry climate types. Projections of future changes in the climatic zones were composed using multimodel mean projections based on simulations performed with 19 global climate models. The projections imply that, depending on the greenhouse gas scenarios, about half or possibly even two-thirds of the study domain will be affected by shifts toward a warmer or drier climate type during this century. The projected changes within the next few decades are chiefly located near regions where shifts in the borders of the zones have already occurred during the period 1950–2006. The questionnaire survey indicated that the information regarding the shifting climatic zones as disseminated by the maps was generally interpreted correctly, with the average percentage of correct answers being 86%. Additional examples of the use of the climatic zones to communicate climate change information to the public are included.

Corresponding author address: Kirsti Jylhä, Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland. Email: kirsti.jylha@fmi.fi

Save
  • AchutaRao, K., Covey C. , Doutriaux C. , Fiorino M. , Gleckler P. , Phillips T. , Sperber K. , and Taylor K. , 2004: An appraisal of coupled climate model simulations. Lawrence Livermore National Laboratory Tech. Rep. UCRL-TR-202550, 197 pp. [Available online at https://e-reports-ext.llnl.gov/pdf/305293.pdf].

    • Search Google Scholar
    • Export Citation
  • Alcamo, J., and Coauthors, 2007: Europe. Climate Change 2007: Impacts, Adaptation and Vulnerability, M. L. Parry et al., Eds., Cambridge University Press, 541–580.

    • Search Google Scholar
    • Export Citation
  • Beck, C., Grieser J. , Kottek M. , Rubel F. , and Rudolf B. , 2006: Characterizing global climate change by means of Köppen climate classification. Klimastatusbericht, 2005 , 139149.

    • Search Google Scholar
    • Export Citation
  • Conrad, V., and Pollak L. W. , 1950: Methods in Climatology. Harvard University Press, 459 pp.

  • Conway, T. J., Tans P. P. , Waterman L. S. , Thoning K. W. , Kitzis D. R. , Masarie K. A. , and Zhang N. , 1994: Evidence of interannual variability of the carbon cycle from the NOAA/CMDL global air sampling network. J. Geophys. Res., 99 , 2283122855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Critchfield, H. J., 1966: General Climatology. 2nd ed. Prentice Hall, 420 pp.

  • de Castro, M., Gallardo C. , Jylhä K. , and Tuomenvirta H. , 2007: The use of a climate-type classification for assessing climate change effects in Europe from an ensemble of regional climate models. Climatic Change, 81 , (Suppl.). 329341. doi:10.1007/s10584-006-9224-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., Gerstengarbe F-W. , and Werner P. C. , 2001: Climate shifts during the last century. Climatic Change, 50 , 405417. doi:10.1023/A:1010699428863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, X., and Giorgi F. , 2008: Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Global Planet. Change, 62 , 195209. doi:10.1016/j.gloplacha.2008.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerstengarbe, F-W., and Werner P. C. , 2008: A short update on Koeppen climate shifts in Europe between 1901 and 2003. Climatic Change, 92 , 99107. doi:10.1007/s10584-008-9430-0.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and Stouffer R. J. , 2006: Diagnosing atmosphere-ocean general circulation model errors relevant to the terrestrial biosphere using the Köppen climate classification. Geophys. Res. Lett., 33 , L22701. doi:10.1029/2006GL028098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, C., Cooper C. , Senior C. A. , Banks H. , Gregory J. M. , Johns T. C. , Mitchell J. F. B. , and Wood R. A. , 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16 , 147168. doi:10.1007/s003820050010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, L. P., Hagemann S. , Jaun S. , and Beniston M. , 2007: On interpreting hydrological change from regional climate models. Climatic Change, 81 , 97122. doi:10.1007/s10584-006-9217-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grundstein, A., 2009: Evaluation of climate change over the continental United States using a moisture index. Climatic Change, 93 , 103115. doi:10.1007/s10584-008-9480-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guetter, P. J., and Kutzbach J. E. , 1990: A modified Köppen classification applied to model simulations of glacial and interglacial climates. Climatic Change, 16 , 193215. doi:10.1007/BF00134657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallegatte, S., Hourcade J-C. , and Ambrosi P. , 2007: Using climate analogues for assessing climate change economic impacts in urban areas. Climatic Change, 82 , 4760. doi:10.1007/s10584-006-9161-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., Lacis A. , Rind D. , Russel G. , Stone P. , Fung I. , Ruedy R. , and Lerner J. , 1984: Climate sensitivity: Analysis of feedback mechanisms. Climate Processes and Climate Sensitivity, Geophys. Monogr., Vol. 29, Amer. Geophys. Union, 130–163.

    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., Hofstra N. , Klein Tank A. M. G. , Klok E. J. , Jones P. D. , and New M. , 2008: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113 , D20119. doi:10.1029/2008JD010201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Ding Y. , Griggs D. J. , Noguer M. , van der Linden P. J. , Da X. , Maskell K. , and Johnson C. A. , Eds. 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Kalvová, J., Halenka T. , Bezpalcová K. , and Nemešová I. , 2003: Köppen climate types in observed and simulated climates. Stud. Geophys. Geod., 47 , 185202. doi:10.1023/A:1022263908716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleidon, A., Fraedrich K. , and Heimann M. , 2000: A green planet versus a desert world: Estimating the maximum effect of vegetation on the land surface climate. Climatic Change, 44 , 471493. doi:10.1023/A:1005559518889.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Köppen, W. P., 1936: Das geographische System der Klimate. Handbuch der Klimatologie, W. P. Köppen and R. Geiger, Eds., Vol. 1, Part C, Gebrüder Borntraeger, C1–C44.

    • Search Google Scholar
    • Export Citation
  • Kottek, M., Grieser J. , Beck C. , Rudolf B. , and Rubel F. , 2006: World map of the Köppen-Geiger climate classification updated. Meteor. Z., 15 , 259263. doi:10.1127/0941-2948/2006/0130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and Willmott C. J. , 1990a: Mean seasonal and spatial variability global surface air temperature. Theor. Appl. Climatol., 41 , 1121. doi:10.1007/BF00866198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and Willmott C. J. , 1990b: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10 , 111127. doi:10.1002/joc.3370100202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemke, C. R., and Stein B. , 2008: Population–climate–energy: Scenarios to 2050. Klima 2008, Hamburg, Germany, Hamburg University of Applied Sciences, 8 pp.

    • Search Google Scholar
    • Export Citation
  • Le Quéré, C., and Coauthors, 2009: Trends in the sources and sinks of carbon dioxide. Nat. Geosci., 2 , 831836. doi:10.1038/ngeo689.

  • Lewis, H. A. G., and Geelan P. J. M. , 1998: The Times Atlas of the World. 9th ed. Times Books, 123 pp. + app. 218 pp.

  • Lohmann, U., Sausen R. , Bengtsson L. , Cubasch U. , Perlwitz J. , and Roeckner E. , 1993: The Köppen climate classification as a diagnostic tool for general circulation models. Climate Res., 3 , 177193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luterbacher, J., Dietrich D. , Xoplaki E. , Grosjean M. , and Wanner H. , 2004: European seasonal and annual temperature variability, trends, and extremes since 1500. Science, 303 , 14991503. doi:10.1126/science.1093877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and Holloway J. L. , 1975: The seasonal variation of the hydrologic cycle as simulated by a global model of the atmosphere. J. Geophys. Res., 80 , 16171649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., Covey C. , Delworth T. , Latif M. , McAvaney B. , Mitchell J. F. B. , Stouffer R. J. , and Taylor K. E. , 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88 , 13831394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moser, S. C., 2008: Toward a deeper engagement of the U.S. public on climate change: An open letter to the 44th president of the United States of America. Int. J. Sustainability Commun., 3 , 119132.

    • Search Google Scholar
    • Export Citation
  • Nakićenović, N., and Swart R. , 2000: Special Report on Emissions Scenarios. Cambridge University Press, 599 pp.

  • Nicholson-Cole, S. A., 2005: Representing climate change futures: A critique on the use of images for visual communication. Comput. Environ. Urban Syst., 29 , 255273. doi:10.1016/j.compenvurbsys.2004.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peel, M. C., Finlayson B. L. , and McMahon T. A. , 2007: Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11 , 16331644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, V. D., Gallani M. L. , Rowntree P. R. , and Stratton R. A. , 2000: The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Climate Dyn., 16 , 123146. doi:10.1007/s003820050009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Retallack, S., Lawrence T. , and Lockwood M. , 2007: Positive energy: Harnessing people power to prevent climate change: A summary. Institute for Public Policy Research, 23 pp.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., Bengtsson L. , Feichter J. , Lelieveld J. , and Rodhe H. , 1999: Transient climate change simulations with a coupled atmosphere–ocean GCM including the tropospheric sulfur cycle. J. Climate, 12 , 30043032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruosteenoja, K., Tuomenvirta H. , and Jylhä K. , 2007: GCM-based regional temperature and precipitation change estimates for Europe under four SRES scenarios applying a super-ensemble pattern-scaling method. Climatic Change, 81 , (Suppl.). 193208. doi:10.1007/s10584-006-9222-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanderson, M., 1999: The classification of climates from Pythagoras to Koeppen. Bull. Amer. Meteor. Soc., 80 , 669673.

  • Solomon, S., Qin D. , Manning M. , Marquis M. , Averyt K. , Tignor M. M. B. , Miller H. L. Jr., and Chen Z. , Eds. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Staats, H. J., Wit A. P. , and Midden C. J. H. , 1996: Communicating the greenhouse effect to the public: Evaluation of a mass media campaign from a social dilemma perspective. J. Environ. Manage., 46 , 189203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, H., de Hoedt G. , and Ernst J. , 2000: Objective classification of Australian climates. Aust. Meteor. Mag., 49 , 8793.

  • Wang, M., and Overland J. E. , 2004: Detecting Arctic climate change using Köppen climate classification. Climatic Change, 67 , 4362. doi:10.1007/s10584-004-4786-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yates, D. N., Kittel T. G. F. , and Cannon R. F. , 2000: Comparing the correlative Holdridge model to mechanistic biogeographical models for assessing vegetation distribution response to climatic change. Climatic Change, 44 , 5987. doi:10.1023/A:1005495908758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, T. X., Fan Z. M. , Liu J. Y. , and Wei B. X. , 2006: Scenarios of major terrestrial ecosystems in China. Ecol. Modell., 199 , 363376.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3012 705 161
PDF Downloads 2220 293 21