• Bender, M. A., Ginis I. , Tuleya R. , Thomas B. , and Marchok T. , 2007: The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135 , 39653989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., Knutson T. R. , Tuleya R. E. , Sirutis J. J. , Vecchi G. A. , Garner S. T. , and Held I. M. , 2010: Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 327 , 454455. doi:10.1126/science.1180568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blake, E. S., Rappaport E. N. , and Landsea C. W. , 2007: The deadliest, costliest, and most intense United States tropical cyclones from 1851 to 2006 (and other frequently requested hurricane facts). NOAA Tech. Memo. NWS TPC-5, 45 pp. [Available online at http://www.aoml.noaa.gov/hrd/Landsea/Blakeetal_noaamemoApr2007.pdf].

    • Search Google Scholar
    • Export Citation
  • Calais, E., Han J. Y. , DeMets C. , and Nocquer J. M. , 2006: Deformation of the North American plate interior from a decade of continuous GPS measurements. J. Geophys. Res., 111 , B06402. doi:10.1029/2005JB004253.

    • Search Google Scholar
    • Export Citation
  • Cazenave, A., and Nerem R. S. , 2004: Present-day sea level change: Observations and causes. Rev. Geophys., 42 , RG3001. doi:10.1029/2003RG000139.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., and White N. J. , 2006: A 20th century acceleration in global sea-level rise. Geophys. Res. Lett., 33 , L01602. doi:10.1029/2005GL024826.

    • Search Google Scholar
    • Export Citation
  • Dailey, P. S., Zuba G. , Ljung G. , Dima I. M. , and Guin J. , 2009: On the relationship between North Atlantic sea surface temperatures and U.S. hurricane landfall risk. J. Appl. Meteor. Climatol., 48 , 111129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donnelly, J. P., and Woodruff J. D. , 2007: Intense hurricane activity over the past 5,000 years controlled by El Niño and the West African monsoon. Nature, 447 , 465468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and Velden C. S. , 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85 , 353365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and Ray R. D. , 2003: Deviation of long-period tides from equilibrium: Kinematics and geostrophy. J. Phys. Oceanogr., 33 , 822839.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436 , 686688.

  • Emanuel, K., Sundararajan R. , and Williams J. , 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89 , 347367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gesch, D. B., 2007: The national elevation dataset. Digital Elevation Model Technologies and Applications: The DEM Users Manual, 2nd ed., D. Maune, Ed., American Society for Photogrammetry and Remote Sensing, 99–118.

    • Search Google Scholar
    • Export Citation
  • Gesch, D. B., Oimoen M. , Greenlee S. , Nelson C. , Steuck M. , and Tyler D. , 2002: The national elevation dataset. Photogramm. Eng. Remote Sens., 68 , 511.

    • Search Google Scholar
    • Export Citation
  • Hallegatte, S., Patmore N. , Mestre O. , Dumas P. , Corfee-Morlot C. H. J. , and Wood R. M. , 2008: Assessing climate change impacts, sea level rise and storm surge risk in port cities: A case study on Copenhagen. Environment Working Papers 3, Organisation for Economic Co-operation and Development, 52 pp. [Available online at http://www.oecd-ilibrary.org/environment/assessing-climate-change-impacts-sea-level-rise-and-storm-surge-risk-in-port-cities_236018165623].

    • Search Google Scholar
    • Export Citation
  • Hill, E. M., Ponte R. M. , and Davis J. L. , 2007: Dynamic and regression modeling of ocean variability in the tide-gauge record at seasonal and longer periods. J. Geophys. Res., 112 , C05007. doi:10.1029/2006JC003745.

    • Search Google Scholar
    • Export Citation
  • Holgate, S. J., and Woodworth P. L. , 2004: Evidence for enhanced coastal sea level rise during the 1990s. Geophys. Res. Lett., 31 , L07305. doi:10.1029/2004GL019626.

    • Search Google Scholar
    • Export Citation
  • Hu, A., Meehl G. A. , Han W. , and Yin J. , 2009: Transient response of the MOC and climate to potential melting of the Greenland Ice Sheet in the 21st century. Geophys. Res. Lett., 36 , L10707. doi:10.1029/2009GL037998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hye-Mi, K., Webster P. , and Curry J. , 2009: Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science, 325 , 7780. doi:10.1126/science.1174062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irish, J. L., Resio D. T. , and Ratcliff J. J. , 2008: The influence of storm size on hurricane surge. J. Phys. Oceanogr., 38 , 20032013.

  • Jelesnianski, C. P., 1972: SPLASH (Special Program to List Amplitudes of Surges from Hurricanes): I. Landfall storms. NOAA Tech. Memo. NWS TDL-46, 52 pp.

    • Search Google Scholar
    • Export Citation
  • Kennedy, A. B., Rogers S. , Sallenger A. , Gravois U. , Zachry B. C. , and Dosa F. Z. M. , 2010: Building destruction from waves and surge on the Bolivar Peninsula during Hurricane Ike. J. Waterw. Port Coastal Ocean Eng., doi:10.1061/(ASCE)WW.1943-5460.0000061, in press.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R. Coauthors 2010: Tropical cyclones and climate change. Nat. Geosci., 3 , 157163. doi:10.1038/ngeo779.

  • Kug, J-S., Jin F-F. , and An S-I. , 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22 , 14991515.

  • Landsea, C. W., 2005: Hurricanes and global warming. Nature, 438 , E11E12. doi:10.1038/nature04477.

  • Lee, K., and Rosowsky D. V. , 2005: Fragility assessment for roof sheathing failure in high wind regions. Eng. Structures, 6 , 857868.

  • Leuliette, E. W., Nerem R. S. , and Mitchum G. T. , 2004: Calibration of TOPEX/Poseidon and Jason altimeter data to construct a continuous record of mean sea level change. Mar. Geod., 27 , 7994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and Emanuel K. A. , 2006: Atlantic hurricane trends linked to climate change. Eos, Trans. Amer. Geophys. Union, 87 .doi:10.1029/2006EO240001.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., Emanuel K. A. , Holland G. J. , and Webster P. J. , 2007: Atlantic tropical cyclones revisited. Eos, Trans. Amer. Geophys. Union, 88 .doi:10.1029/2007EO360002.

    • Search Google Scholar
    • Export Citation
  • McInnes, K. L., Walsh K. J. E. , Hubbert G. D. , and Beer T. , 2003: Impact of sea-level rise and storm surges on a coastal community. Nat. Hazards, 30 , 187207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitrovica, J. X., Gomez N. , and Clark P. U. , 2009: The sea-level fingerprint of West Antarctic collapse. Science, 323 , 753. doi:10.1126/science.1166510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morton, R. A., Bernier J. C. , Barras J. A. , and Ferina N. F. , 2005: Rapid subsidence and historical wetland loss in the Mississippi Delta plain: Likely causes and future implications. Rep. 1216, U.S. Geological Survey, 116 pp. [Available online at http://pubs.usgs.gov/of/2005/1216/].

    • Search Google Scholar
    • Export Citation
  • NOAA cited. 2007: Linear mean sea level (MSL) trends and 95% confidence intervals in mm/yr. NOAA Center for Operational Oceanographic Products and Services. [Available online at http://tidesandcurrents.noaa.gov/sltrends/msltrendstable.htm].

    • Search Google Scholar
    • Export Citation
  • Pachauri, R. K., and Reisinger A. , Eds. 2007: Climate Change 2007: Synthesis Report. Intergovernmental Panel on Climate Change, 104 pp. [Available online at http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_synthesis_report.htm].

    • Search Google Scholar
    • Export Citation
  • Pfeffer, W. T., Harper J. T. , and O’Neel S. , 2008: Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science, 321 , 13401343. doi:10.1126/science.1159099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., 2006: Low frequency sea level variability and the inverted barometer effect. J. Atmos. Oceanic Technol., 23 , 619629.

  • Rosowsky, D. V., and Ellingwood B. R. , 2002: Performance-based engineering of wood frame housing: A fragility analysis methodology. J. Struct. Eng., 128 , 3238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabbatelli, T. A., and Mann M. E. , 2007: The influence of climate state variables on Atlantic tropical cyclone occurrence rates. J. Geophys. Res., 112 , D17114. doi:10.1029/2007JD008385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, M. A., Chandler R. E. , Merchant C. J. , and Roberts F. P. , 2000: Atlantic hurricanes and NW Pacific typhoons: ENSO spatial impacts on occurrence and landfall. Geophys. Res. Lett., 27 , 11471150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., and Knutson T. , 2007: The current debate on the linkage between global warming and hurricanes. Geogr. Compass, 1 , 124. doi:10.1111/j.1749-8198.2006.00002.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sill, B. L., and Kozlowski R. T. , 1997: Analysis of storm damage factors for low rise structures. J. Perform. Constr. Facil., 11 , 168177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., Qin D. , Manning M. , Marquis M. , Averyt K. , Tignor M. M. B. , Miller H. L. Jr., and Chen Z. , Eds. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., 2008: Nonlocality of Atlantic tropical cyclone intensities. Geochem. Geophys. Geosyst., 9 , Q04V01. doi:10.1029/2007GC001844.

    • Search Google Scholar
    • Export Citation
  • Unanwa, C. O., McDonald J. R. , Mehta K. C. , and Smith D. A. , 2000: The development of wind damage bands for building. J. Wind Eng. Ind. Aerodyn., 84 , 119149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Knutson T. R. , 2008: On estimates of historical North Atlantic tropical cyclone activity. J. Climate, 21 , 35803600.

  • Woodworth, P. L., and Blackman D. L. , 2004: Evidence for systematic changes in extreme high waters since the mid-1970s. J. Climate, 17 , 11901197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zervas, C., 2001: Sea level variations of the United States 1854–1999. NOAA Tech. Rep. NOS CO-OPS 36, 80 pp + appendices. [Report available online at http://tidesandcurrents.noaa.gov/publications/techrpt36doc.pdf; appendices available at http://tidesandcurrents.noaa.gov/pub.html].

    • Search Google Scholar
    • Export Citation
  • Zhang, K., Douglas B. C. , and Leatherman S. P. , 2000: Twentieth-century storm activity along the U.S. East Coast. J. Climate, 13 , 17481761.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 331 120 11
PDF Downloads 215 93 3

An Estimate of Increases in Storm Surge Risk to Property from Sea Level Rise in the First Half of the Twenty-First Century

Ross N. Hoffman*Atmospheric and Environmental Research, Inc., Lexington, Massachusetts

Search for other papers by Ross N. Hoffman in
Current site
Google Scholar
PubMed
Close
,
Peter DaileyAIR Worldwide Corp., Boston, Massachusetts

Search for other papers by Peter Dailey in
Current site
Google Scholar
PubMed
Close
,
Susanna Hopsch*Atmospheric and Environmental Research, Inc., Lexington, Massachusetts
AIR Worldwide Corp., Boston, Massachusetts

Search for other papers by Susanna Hopsch in
Current site
Google Scholar
PubMed
Close
,
Rui M. Ponte*Atmospheric and Environmental Research, Inc., Lexington, Massachusetts

Search for other papers by Rui M. Ponte in
Current site
Google Scholar
PubMed
Close
,
Katherine Quinn*Atmospheric and Environmental Research, Inc., Lexington, Massachusetts

Search for other papers by Katherine Quinn in
Current site
Google Scholar
PubMed
Close
,
Emma M. HillHarvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts

Search for other papers by Emma M. Hill in
Current site
Google Scholar
PubMed
Close
, and
Brian ZachryAIR Worldwide Corp., Boston, Massachusetts

Search for other papers by Brian Zachry in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Sea level is rising as the World Ocean warms and ice caps and glaciers melt. Published estimates based on data from satellite altimeters, beginning in late 1992, suggest that the global mean sea level has been rising on the order of 3 mm yr−1. Local processes, including ocean currents and land motions due to a variety of causes, modulate the global signal spatially and temporally. These local signals can be much larger than the global signal, and especially so on annual or shorter time scales.

Even increases on the order of 10 cm in sea level can amplify the already devastating losses that occur when a hurricane-driven storm surge coincides with an astronomical high tide. To quantify the sensitivity of property risk to increasing sea level, changes in expected annual losses to property along the U.S. Gulf and East Coasts are calculated as follows. First, observed trends in sea level rise from tide gauges are extrapolated to the year 2030, and these changes are interpolated to all coastal locations. Then a 10 000-yr catalog of simulated hurricanes is used to define critical wind parameters for each event. These wind parameters then drive a parametric time-evolving storm surge model that accounts for bathymetry, coastal geometry, surface roughness, and the phase of the astronomical tide. The impact of the maximum storm surge height on a comprehensive inventory of commercial and residential property is then calculated, using engineering models that take into account the characteristics of the full range of construction types.

Average annual losses projected to the year 2030 are presented for regions and key states and are normalized by aggregate property value on a zip code by zip code basis. Comparisons to the results of a control run reflecting the risk today quantify the change in risk per dollar of property on a percentage basis. Increases in expected losses due to the effect of sea level rise alone vary by region, with increases of 20% or more being common. Further sensitivity tests quantify the impact on the risk of sea level rise plus additional factors, such as changes in hurricane frequency and intensity as a result of rising sea surface temperatures.

@ Current affiliation: Earth Observatory of Singapore, Nanyang Technological University, Singapore

Corresponding author address: Dr. Ross N. Hoffman, Atmospheric and Environmental Research, Inc., 131 Hartwell Ave., Lexington, MA 02421–3126. Email: rhoffman@aer.com

Abstract

Sea level is rising as the World Ocean warms and ice caps and glaciers melt. Published estimates based on data from satellite altimeters, beginning in late 1992, suggest that the global mean sea level has been rising on the order of 3 mm yr−1. Local processes, including ocean currents and land motions due to a variety of causes, modulate the global signal spatially and temporally. These local signals can be much larger than the global signal, and especially so on annual or shorter time scales.

Even increases on the order of 10 cm in sea level can amplify the already devastating losses that occur when a hurricane-driven storm surge coincides with an astronomical high tide. To quantify the sensitivity of property risk to increasing sea level, changes in expected annual losses to property along the U.S. Gulf and East Coasts are calculated as follows. First, observed trends in sea level rise from tide gauges are extrapolated to the year 2030, and these changes are interpolated to all coastal locations. Then a 10 000-yr catalog of simulated hurricanes is used to define critical wind parameters for each event. These wind parameters then drive a parametric time-evolving storm surge model that accounts for bathymetry, coastal geometry, surface roughness, and the phase of the astronomical tide. The impact of the maximum storm surge height on a comprehensive inventory of commercial and residential property is then calculated, using engineering models that take into account the characteristics of the full range of construction types.

Average annual losses projected to the year 2030 are presented for regions and key states and are normalized by aggregate property value on a zip code by zip code basis. Comparisons to the results of a control run reflecting the risk today quantify the change in risk per dollar of property on a percentage basis. Increases in expected losses due to the effect of sea level rise alone vary by region, with increases of 20% or more being common. Further sensitivity tests quantify the impact on the risk of sea level rise plus additional factors, such as changes in hurricane frequency and intensity as a result of rising sea surface temperatures.

@ Current affiliation: Earth Observatory of Singapore, Nanyang Technological University, Singapore

Corresponding author address: Dr. Ross N. Hoffman, Atmospheric and Environmental Research, Inc., 131 Hartwell Ave., Lexington, MA 02421–3126. Email: rhoffman@aer.com

Save