Climate Influences on Meningitis Incidence in Northwest Nigeria

Auwal F. Abdussalam School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom

Search for other papers by Auwal F. Abdussalam in
Current site
Google Scholar
PubMed
Close
,
Andrew J. Monaghan National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Andrew J. Monaghan in
Current site
Google Scholar
PubMed
Close
,
Vanja M. Dukić Department of Applied Mathematics, University of Colorado, Boulder, Boulder, Colorado

Search for other papers by Vanja M. Dukić in
Current site
Google Scholar
PubMed
Close
,
Mary H. Hayden National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Mary H. Hayden in
Current site
Google Scholar
PubMed
Close
,
Thomas M. Hopson National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Thomas M. Hopson in
Current site
Google Scholar
PubMed
Close
,
Gregor C. Leckebusch School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom

Search for other papers by Gregor C. Leckebusch in
Current site
Google Scholar
PubMed
Close
, and
John E. Thornes School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom

Search for other papers by John E. Thornes in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Northwest Nigeria is a region with a high risk of meningitis. In this study, the influence of climate on monthly meningitis incidence was examined. Monthly counts of clinically diagnosed hospital-reported cases of meningitis were collected from three hospitals in northwest Nigeria for the 22-yr period spanning 1990–2011. Generalized additive models and generalized linear models were fitted to aggregated monthly meningitis counts. Explanatory variables included monthly time series of maximum and minimum temperature, humidity, rainfall, wind speed, sunshine, and dustiness from weather stations nearest to the hospitals, and the number of cases in the previous month. The effects of other unobserved seasonally varying climatic and nonclimatic risk factors that may be related to the disease were collectively accounted for as a flexible monthly varying smooth function of time in the generalized additive models, s(t). Results reveal that the most important explanatory climatic variables are the monthly means of daily maximum temperature, relative humidity, and sunshine with no lag; and dustiness with a 1-month lag. Accounting for s(t) in the generalized additive models explains more of the monthly variability of meningitis compared to those generalized linear models that do not account for the unobserved factors that s(t) represents. The skill score statistics of a model version with all explanatory variables lagged by 1 month suggest the potential to predict meningitis cases in northwest Nigeria up to a month in advance to aid decision makers.

Corresponding author address: Auwal F. Abdussalam, School of Geography, Earth, and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom. E-mail: g.c.leckebusch@bham.ac.uk

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Abstract

Northwest Nigeria is a region with a high risk of meningitis. In this study, the influence of climate on monthly meningitis incidence was examined. Monthly counts of clinically diagnosed hospital-reported cases of meningitis were collected from three hospitals in northwest Nigeria for the 22-yr period spanning 1990–2011. Generalized additive models and generalized linear models were fitted to aggregated monthly meningitis counts. Explanatory variables included monthly time series of maximum and minimum temperature, humidity, rainfall, wind speed, sunshine, and dustiness from weather stations nearest to the hospitals, and the number of cases in the previous month. The effects of other unobserved seasonally varying climatic and nonclimatic risk factors that may be related to the disease were collectively accounted for as a flexible monthly varying smooth function of time in the generalized additive models, s(t). Results reveal that the most important explanatory climatic variables are the monthly means of daily maximum temperature, relative humidity, and sunshine with no lag; and dustiness with a 1-month lag. Accounting for s(t) in the generalized additive models explains more of the monthly variability of meningitis compared to those generalized linear models that do not account for the unobserved factors that s(t) represents. The skill score statistics of a model version with all explanatory variables lagged by 1 month suggest the potential to predict meningitis cases in northwest Nigeria up to a month in advance to aid decision makers.

Corresponding author address: Auwal F. Abdussalam, School of Geography, Earth, and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom. E-mail: g.c.leckebusch@bham.ac.uk

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Save
  • Besancenot, J. P., Boko M. , and Oke P. C. , 1997: Weather conditions and cerebrospinal meningitis in Benin (Gulf of Guinea, West Africa). Eur. J. Epidemiol., 13, 807815.

    • Search Google Scholar
    • Export Citation
  • Broome, C. V., Rugh M. A. , Yada A. A. , Giat L. , Giat H. , Zeltner J. M. , Sanborn W. R. , and Fraser D. W. , 1983: Epidemic group C meningococcal meningitis in Upper Volta. Bull. World Health Organ., 61, 325330.

    • Search Google Scholar
    • Export Citation
  • Brundage, J., and Zollinger W. , 1987: Evolution of meningococcal disease epidemiology in the U.S. Army. Evolution of Meningococcal Disease, N. A. Vedros, Ed., Vol. 1, CRC Press, 5–25.

  • Burgess, K. R., and Whitelaw W. A. , 1988: Effects of nasal cold receptors on pattern of breathing. J. Appl. Physiol., 64, 371376.

  • Cameron, A. C., and Trivedi P. K. , 1998: Regression Analysis of Count Data.Econometric Society Monogr., No. 30, Cambridge University Press, 436 pp.

  • Cartwright, K. A. V., 1995: Meningococcal carriage and disease. Meningococcal Disease, K. A. V. Cartwright, Ed., John Wiley and Sons, 115–146.

  • Cheesbrough, J. S., Morse A. P. , and Green S. D. R. , 1995: Meningococcal meningitis and carriage in western Zaire: A hypoendemic zone related to climate. Epidemiol. Infect., 114, 7592.

    • Search Google Scholar
    • Export Citation
  • Climate Research Division, cited 2008: RClimDex 1.0. Expert team on climate change detection and indices. [Available online at http://etccdi.pacificclimate.org/software.shtml.]

  • Cookson, S., Corrales J. , Lotero J. , Regueira M. , Binsztein N. , Reevas M. , Ajello G. , and Jarvis W. R. , 1998: Disco fever: Epidemic meningococcal disease in northeastern Argentina associated with disco patronage. J. Infect. Dis., 178, 266269.

    • Search Google Scholar
    • Export Citation
  • Cornforth, R., 2012: Overview of the West African monsoon 2011. Weather, 67, 5965.

  • Decosas, J., and Koama J. B. T. , 2002: Chronicles of an outbreak foretold: Meningococcal meningitis W135 in Burkina Faso. Lancet Infect. Dis., 2, 763765.

    • Search Google Scholar
    • Export Citation
  • Dukić, V., and Coauthors, 2012: The role of weather in meningitis outbreaks in Navrongo, Ghana: A generalized additive modeling approach. J. Agric. Biol. Environ. Stat., 17, 422460, doi:10.1007/s13253-012-0095-9.

    • Search Google Scholar
    • Export Citation
  • Fischer, M., and Coauthors, 1997: Tobacco smoke as a risk factor for menigococcal disease. Pediatr. Infect. Dis. J., 16, 979983.

  • Greenwood, B. M., 2006: Editorial: 100 years of epidemic meningitis in West Africa—Has anything changed? Trop. Med. Int. Health, 11, 773780.

    • Search Google Scholar
    • Export Citation
  • Greenwood, B. M., and Stuart J. M. , 2012: A vaccine to prevent epidemic meningitis in Africa. Lancet Infect. Dis., 12, 738739.

  • Greenwood, B. M., Bradley A. K. , Blakebrough I. S. , Wali S. , and Whittle H. C. , 1984: Meningococcal disease and season in sub-Saharan Africa. Lancet, 323, 13391342.

    • Search Google Scholar
    • Export Citation
  • Harrison, L. H., Trotter C. L. , and Ramsey M. E. , 2009: Global epidemiology of meningococcal disease. Vaccine, 27, 5163.

  • Hastie, T. J., and Tibshirani R. J. , 1999: Generalized Additive Models.Chapman and Hall Ltd., 335 pp.

  • Hodgson, A., Smith T. , Gagneux S. , Adjuik M. , Pluschke G. , Mensah N. K. , and B. Genton, 2001: Risk factors for meningococcal meningitis in northern Ghana. Trans. Roy. Soc. Trop. Med. Hyg., 95, 477480.

    • Search Google Scholar
    • Export Citation
  • Jandarov, R., Haran M. , and Ferrari M. , 2012: A compartmental model for meningitis: Separating transmission from climate effects on disease incidence. J. Agric. Biol. Environ. Stat., 17, 395416.

    • Search Google Scholar
    • Export Citation
  • Koumare, B., Bougoudogo F. , Cisse M. , Doumbia T. , and Keita M. M. , 1993: Bacteriological aspects of purulent meningitis in Bamako district. A propos of 1541 bacterial strains collected from 1979 to 1991. Bull. Soc. Pathol. Exot., 86, 136140.

    • Search Google Scholar
    • Export Citation
  • Kristiansen, P. A., and Coauthors, 2011: Baseline meningococcal carriage in Burkina Faso before the introduction of a meningococcal serogroup A conjugate vaccine. Clin. Vaccine Immunol., 18, 435443.

    • Search Google Scholar
    • Export Citation
  • Lapeyssonnie, L., 1963: Cerebrospinal meningitis in Africa. Bull. World Health Organ., 28 (Suppl.), 1114.

  • Leake, J. A., and Coauthors, 2002: Early detection and response to meningococcal disease epidemics in sub-Saharan Africa: Appraisal of the WHO strategy. Bull. World Health Organ., 80, 342349.

    • Search Google Scholar
    • Export Citation
  • Lingappa, J. R., and Coauthors, 2003: Serogroup W-135 meningococcal disease during Hajj, 2000. Emerg. Infect. Dis., 9, 665671.

  • Maiden, M. C., and Coauthors, 2008: Impact of menigococcal serogroup C conjugate vaccines on carriage and herd immunity. J. Infect. Dis., 197, 737743.

    • Search Google Scholar
    • Export Citation
  • Mohammed, I., Nasidi A. , Alkali A. S. , Garbati M. A. , Ajayi-Obe E. K. , Audu K. A. , Usman A. , and . Abdullahi S , 2000: A severe epidemic of meningococcal meningitis in Nigeria. Trans. Roy. Soc. Trop. Med. Hyg., 94, 265270.

    • Search Google Scholar
    • Export Citation
  • Molesworth, A. M., Thomson M. C. , Connor S. J. , Cresswell M. P. , Morse A. P. , Shears P. , Hart C. A. , and Cuevas L. E. , 2002: Where is the meningitis belt? Defining an area at risk of epidemic meningitis in Africa. Trans. Roy. Soc. Trop. Med. Hyg., 96, 242249.

    • Search Google Scholar
    • Export Citation
  • Moore, P. S., Hierholzer J. , Dewitt W. , Gouan K. , Djore D. , and Lippeveld T. , 1990: Respiratory viruses and mycoplasma as cofactors for epidemic group A meningococcal meningitis. JAMA, J. Amer. Med. Assoc., 264, 12711275.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. E., Yaro S. , Madec Y. , Somda P. K. , Idohou R. S. , and Njanpop Lafourcade B. M. , 2008: Association of respiratory tract infection symptoms and air humidity with meningococcal carriage in Burkina Faso. Trop. Med. Int. Health, 13, 15431552.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1988: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Wea. Rev., 116, 24172424.

    • Search Google Scholar
    • Export Citation
  • Palmgren, H., 2009: Meningococcal disease and climate. Global Health Action, 2, doi:10.3402/gha.v2i0.2061.

  • Peltola, H., 1983: Meningococcal disease—Still with us. Rev. Infect. Dis., 5, 7191.

  • Pinner, R. W., and Coauthors, 1992: Epidemic meningococcal disease in Nairobi, Kenya, 1989. The Kenya/Centers for Disease Control (CDC) meningitis study group. J. Infect. Dis., 166, 359364.

    • Search Google Scholar
    • Export Citation
  • R Core Team, 2009: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 409 pp.

  • Reingold, A. L., and Coauthors, 1985: Age-specific differences in duration of clinical protection after vaccination with meningococcal polysaccharide a vaccine. Lancet, 2, 114118.

    • Search Google Scholar
    • Export Citation
  • Riou, J.-Y., Djibo S. , Sangare L. , Lombart J.-P. , Fagot P. , Chippaux J.-P. , and Guibourdenche M. , 1996: A predictable comeback: The second epidemic of infections caused by Neisseria meningitidis serogroup A subgroup III in Africa, 1995. Bull. World Health Organ., 74, 181187.

    • Search Google Scholar
    • Export Citation
  • Rosenstein, N. E., Perkins B. A. , Stephens D. S. , Popovic T. , and Hughes J. M. , 2001: Meningococcal disease. N. Engl. J. Med., 344, 13781388.

    • Search Google Scholar
    • Export Citation
  • Schuchat, A., Robinson K. , Wenger J. D. , Harrison L. H. , Farley M. , Reingold A. L. , Lefkowitz L. , and Perkins B. A. , 1997: Bacterial meningitis in the United States in 1995. N. Engl. J. Med., 337, 970976.

    • Search Google Scholar
    • Export Citation
  • Sultan, B., 2005: Influence of climate upon the meningitis onset in West Africa. Med. Sci., 21, 470471, doi:10.1051/medsci/2005215470.

    • Search Google Scholar
    • Export Citation
  • Thomson, M. C., Molesworth A. M. , Djingarey M. H. , Yameogo K. R. , Belanger F. , and Cuevas L. E. , 2006: Potential of environmental models to predict meningitis epidemics in Africa. Trop. Med. Int. Health, 11, 781788.

    • Search Google Scholar
    • Export Citation
  • Trotter, C. L., and Greenwood B. M. , 2007: Meningococcal carriage in the African meningitis belt. Lancet Infect. Dis., 7, 797803.

  • van der Werf, G. R., and Coauthors, 2010: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys., 10, 11 70711 735.

    • Search Google Scholar
    • Export Citation
  • Vestrheim, D. F., Høiby E. A. , Aaberge I. S. , and Caugant D. A. , 2010: Impact of a pneumococcal conjugate vaccination program on carriage among children in Norway. Clin. Vaccine Immunol., 17, 325334.

    • Search Google Scholar
    • Export Citation
  • Wahdan, M. H., and Coauthors, 1973: A controlled field trial of a serogroup A meningococcal polysaccharide vaccine. Bull. World Health Organ., 48, 667673.

    • Search Google Scholar
    • Export Citation
  • WHO,2010: Managing meningitis epidemic in Africa: A quick reference guide for health authorities and health-care workers. WHO/HSE/GAR/ERI/2010.4, 23 pp. [Available online at http://whqlibdoc.who.int/hq/2010/WHO_HSE_GAR_ERI_2010.4_eng.pdf.]

  • WHO, cited 2012: Meningococcal meningitis. [Available online at http://www.who.int/mediacentre/factsheets/fs141/en/.]

  • WHO Working Group, 1998: Control of epidemic meningococcal disease: WHO practical guidelines. 2nd ed. WHO/EMC/BAC/98.3, 84 pp.

  • World Bank, cited 2012: Data: Nigeria. [Available online at http://data.worldbank.org/country/nigeria.]

  • World Meteorological Organization, 1995: Manual on codes. Vol. I.1, Part A: Alphanumeric Codes, WMO Publ. 306, 503 pp. [Available online at http://www.wmo.int/pages/prog/www/WMOCodes.html.]

  • Yaka, P., Sultan B. , Broutin H. , Janicot S. , Philippon S. , and Fourquet N. , 2008: Relationships between climate and year-to-year variability in meningitis outbreaks: A case study in Burkina Faso and Niger. Int. J. Health Geogr., 7, doi:10.1186/1476-072x-7-34.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1591 652 90
PDF Downloads 1062 146 16