• Aguirre, B. E., 1988: The lack of warnings before the Saragosa tornado. Int. J. Mass Emerg. Disasters, 6, 6574.

  • Ahlborn, L., Franc J. M. , and Med D. S. , 2012: Tornado hazard communication disparities among Spanish-speaking individuals in an English-speaking community. Prehosp. Disaster Med., 27, 98102, doi:10.1017/S1049023X12000015.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., and Doswell C. A. , 2002: Deaths in the 3 May 1999 Oklahoma City tornado from a historical perspective. Wea. Forecasting, 17, 354361, doi:10.1175/1520-0434(2002)017<0354:DITMOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cameron, A. C., and Trivedi P. K. , 1990: Regression-based tests for overdispersion in the Poisson model. J. Econometrics, 46, 347364.

    • Search Google Scholar
    • Export Citation
  • Chan, E. H., Vikram S. , Conrad C. , and Brownstein J. S. , 2011: Using web search query data to monitor dengue epidemics: A new model for neglected tropical disease surveillance. PLoS Neglected Trop. Dis., 5, e1206, doi:10.1371/journal.pntd.0001206.

    • Search Google Scholar
    • Export Citation
  • Chew, C., and Eysenbach G. , 2010: Pandemics in the age of Twitter: Content analysis of tweets during the 2009 H1N1 outbreak. PLoS ONE, 5, e14118, doi:10.1371/journal.pone.0014118.

    • Search Google Scholar
    • Export Citation
  • Donner, W. R., Rodriguez H. , and Diaz W. , 2012: Tornado warnings in three southern states: A qualitative analysis of public response patterns. J. Homeland Security Emerg. Manage.,9, doi:10.1515/1547-7355.1955.

  • Doswell, C. A., Moller A. R. , and Brooks H. E. , 1999: Storm spotting and public awareness since the first tornado forecasts of 1948. Wea. Forecasting, 14, 544557, doi:10.1175/1520-0434(1999)014<0544:SSAPAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gelman, A., and Hill J. , 2006: Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, 625 pp.

  • Ginsberg, J., Mohebbi M. H. , Patel R. S. , Brammer L. , Smolinski M. S. , and Brilliant L. , 2009: Detecting influenza epidemics using search engine query data. Nature, 457, 10121014, doi:10.1038/nature07634.

    • Search Google Scholar
    • Export Citation
  • Greene, W. H., 2011: Econometric Analysis.7th ed. Prentice Hall, 1232 pp.

  • Hansen, L. K., Arvidsson A. , Nielsen F. A. , Colleoni E. , and Etter M. , 2011: Good friends, bad news—Affect and virality in Twitter. Future Info. Technol., 185, 3443, doi:10.1007/978-3-642-22309-9_5.

    • Search Google Scholar
    • Export Citation
  • Hoang, T.-A., Lim E.-P. , Achananuparp P. , Jiang J. , and Zhu F. , 2011: On modeling virality of Twitter content. Digital Libraries: For Cultural Heritage, Knowledge Dissemination, and Future Creation, Springer, 212221, doi:10.1007/978-3-642-24826-9_27.

    • Search Google Scholar
    • Export Citation
  • Hong, L., Dan O. , and Davison B. D. , 2011: Predicting popular messages in twitter. Proc. 20th Int. Conf. on the World Wide Web, Hyderabad, India, Association for Computing Machinery, 5758, doi:10.1145/1963192.1963222.

    • Search Google Scholar
    • Export Citation
  • Joslyn, S., and Savelli S. , 2010: Communicating forecast uncertainty: Public perception of weather forecast uncertainty. Meteor. Appl., 17, 180195, doi:10.1002/met.190.

    • Search Google Scholar
    • Export Citation
  • Lampos, V., and Cristianini N. , 2010: Tracking the flu pandemic by monitoring the social web. Second Int. Workshop on Cognitive Information Processing, Elba, Italy, IEEE, 411–416, doi:10.1109/CIP.2010.5604088.

  • Lindell, M. K., and Perry R. W. , 2012: The Protective Action Decision Model: Theoretical modifications and additional evidence. Risk Anal., 32, 616632, doi:10.1111/j.1539-6924.2011.01647.x.

    • Search Google Scholar
    • Export Citation
  • Morss, R. E., Demuth J. L. , and Lazo J. K. , 2008: Communicating uncertainty in weather forecasts: A survey of the U.S. public. Wea. Forecasting, 23, 974991, doi:10.1175/2008WAF2007088.1.

    • Search Google Scholar
    • Export Citation
  • NOAA/NWS Storm Prediction Center, 2012: United States tornadoes of 2011. [Available online at www.spc.noaa.gov/wcm/2011-NOAA-NWS-tornado-facts.pdf.]

  • Ripberger, J. T., 2011: Capturing curiosity: Using internet search trends to measure public attentiveness. Policy Stud. J., 39, 239259, 10.1111/j.1541-0072.2011.00406.x.

    • Search Google Scholar
    • Export Citation
  • Sakaki, T., Okazaki M. , and Matsuo Y. , 2010: Earthquake shakes Twitter users: Real-time event detection by social sensors. Proc. 19th Int. Conf. on World Wide Web, New York, NY, ACM, 851860, doi:10.1145/1772690.1772777.

  • Scharkow, M., and Vogelgesang J. , 2011: Measuring the public agenda using search engine queries. Int. J. Public Opin. Res., 23, 104113, doi:10.1093/ijpor/edq048.

    • Search Google Scholar
    • Export Citation
  • Schmidlin, T. W., King P. S. , Hammer B. O. , and Ono Y. , 1998: Risk factors for death in the 22–23 February 1998 Florida tornadoes. Quick Response Rep. 106. [Available online at www.colorado.edu/hazards/research/qr/qr106/qr106.html.]

  • Sorensen, J., 2000: Hazard warning systems: Review of 20 years of progress. Nat. Hazards Rev., 1, 119125, doi:10.1061/(ASCE)1527-6988(2000)1:2(119).

    • Search Google Scholar
    • Export Citation
  • Szomszor, M., Kostkova P. , and de Quincey E. , 2012: #Swineflu: Twitter predicts swine flu outbreak in 2009. Electronic Healthcare, M. Szomszor and P. Kostkova, Eds., Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Vol. 69, Springer, 18–26, doi:10.1007/978-3-642-23635-8_3.

  • Tumasjan, A., Sprenger T. O. , Sandner P. G. , and Welpe I. M. , 2010: Predicting elections with Twitter: What 140 characters reveal about political sentiment. Proc. Fourth Int. AAAI Conf. on Weblogs and Social Media, Washington, DC, AAAI, 178185. [Available online at www.aaai.org/ocs/index.php/ICWSM/ICWSM10/paper/viewFile/1441/1852.]

  • Wilson, K., and Brownstein J. S. , 2009: Early detection of disease outbreaks using the internet. Can. Med. Assoc. J., 180, 829, doi:10.1503/cmaj.1090215.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 37 37 37
PDF Downloads 26 26 26

Social Media and Severe Weather: Do Tweets Provide a Valid Indicator of Public Attention to Severe Weather Risk Communication?

View More View Less
  • 1 Center for Risk and Crisis Management, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
  • | 2 Center for Risk and Crisis Management, University of Oklahoma, Norman, Oklahoma
  • | 3 Department of Political Science, University of Oklahoma, Norman, Oklahoma
  • | 4 Center for Risk and Crisis Management, University of Oklahoma, Norman, Oklahoma
Restricted access

Abstract

Effective communication about severe weather requires that providers of weather information disseminate accurate and timely messages and that the intended recipients (i.e., the population at risk) receive and react to these messages. This article contributes to extant research on the second half of this equation by introducing a “real time” measure of public attention to severe weather risk communication based on the growing stream of data that individuals publish on social media platforms, in this case, Twitter. The authors develop a metric that tracks temporal fluctuations in tornado-related Twitter activity between 25 April 2012 and 11 November 2012 and assess the validity of the metric by systematically comparing fluctuations in Twitter activity to the issuance of tornado watches and warnings, which represent basic but important forms of communication designed to elicit, and therefore correlate with, public attention. The assessment finds that the measure demonstrates a high degree of convergent validity, suggesting that social media data can be used to advance our understanding of the relationship between risk communication, attention, and public reactions to severe weather.

Corresponding author address: Joseph T. Ripberger, 120 David L. Boren Blvd., Rm. 3106, Norman, OK 73072. E-mail: jtr@ou.edu; joseph.ripberger@noaa.gov

This article is included in the Tornado Warning, Preparedness, and Impacts Special Collection.

Abstract

Effective communication about severe weather requires that providers of weather information disseminate accurate and timely messages and that the intended recipients (i.e., the population at risk) receive and react to these messages. This article contributes to extant research on the second half of this equation by introducing a “real time” measure of public attention to severe weather risk communication based on the growing stream of data that individuals publish on social media platforms, in this case, Twitter. The authors develop a metric that tracks temporal fluctuations in tornado-related Twitter activity between 25 April 2012 and 11 November 2012 and assess the validity of the metric by systematically comparing fluctuations in Twitter activity to the issuance of tornado watches and warnings, which represent basic but important forms of communication designed to elicit, and therefore correlate with, public attention. The assessment finds that the measure demonstrates a high degree of convergent validity, suggesting that social media data can be used to advance our understanding of the relationship between risk communication, attention, and public reactions to severe weather.

Corresponding author address: Joseph T. Ripberger, 120 David L. Boren Blvd., Rm. 3106, Norman, OK 73072. E-mail: jtr@ou.edu; joseph.ripberger@noaa.gov

This article is included in the Tornado Warning, Preparedness, and Impacts Special Collection.

Save