• Aaheim, H. A., and Hauge K. E. , 2005: Impacts of climate change on travel habits: A national assessment based on individual choices. CICERO Rep. 07, Centre for International Climate and Environmental Research, Oslo, Norway, 35 pp.

  • Adler, T., Rimmer L. , and Carpenter D. , 2002: Use of Internet-based household travel diary survey instrument. Transp. Res. Rec., 1804, 134143, doi:10.3141/1804-18.

    • Search Google Scholar
    • Export Citation
  • Ahmed, F., Rose G. , Figliozzi M. , and Jakob C. , 2012: Commuter cyclist’s sensitivity to changes in weather: Insight from two cities with different climatic conditions. Proc. Transport Research Board 2012 Annual Meeting, Washington, DC, Transportation Research Board of the National Academies, 1–20.

  • Bergström, A., and Magnusson R. , 2003: Potential of transferring car trips to bicycle during winter. Transp. Res., 37A, 649–666, doi:10.1016/S0965-8564(03)00012-0.

    • Search Google Scholar
    • Export Citation
  • Böcker, L., Dijst M. , and Prillwitz J. , 2013: Impact of everyday weather on individual daily travel behaviours in perspective: A literature review. Transp. Rev., 33, 7191, doi:10.1080/01441647.2012.747114.

    • Search Google Scholar
    • Export Citation
  • Brandenburg, C., and Arnberger A. , 2001: The influence of the weather upon recreation activities. Proc. First Int. Workshop on Climate, Tourism, and Recreation, Halkidiki, Greece, Neos Marmaras, 123–132.

  • Brandenburg, C., Matzarakis A. , and Arnberger A. , 2004: Visitor motivation and dependence on the weather of recreationists in Viennese recreation areas. Advances in tourism climatology, A. Matzarakis, C.R. De Freitas, and D. Scott, Eds., Berichte des Meteorologischen Instituts der Universität Freiburg, No. 12, 189–197. [Available online at http://www.urbanclimate.net/cctr/ws2/report.htm.]

  • Cameron, A. C., and Trivedi P. K. , 1998: Regression Analysis of Count Data. Cambridge University Press, 411 pp.

  • Cervero, R., and Seskin S. , 1995: An evaluation of the relationships between transit and urban form. TCRP Res. Results Dig., 7, Transportation Research Board, 55 pp. [Available online at http://onlinepubs.trb.org/onlinepubs/tcrp/tcrp_rrd_07.pdf.]

    • Search Google Scholar
    • Export Citation
  • Dieleman, F. M., Dijst M. J. , and Burghouwt G. , 2002: Urban form and travel behavior: Micro-level household attributes and residential context. Urban Stud., 39 (3), 507527, doi:10.1080/00420980220112801.

    • Search Google Scholar
    • Export Citation
  • Flynn, B. S., Dana G. , Sears J. , and Aultman-Hall L. , 2012: Weather factor impacts on commuting to work by bicycle. Prev. Med., 54, 122124, doi:10.1016/j.ypmed.2011.11.002.

    • Search Google Scholar
    • Export Citation
  • Gallop, C., Tse C. , and Zhao J. A. , 2012: Seasonal autoregressive model of Vancouver bicycle traffic using weather variables. Proc. 91st Transportation Research Board Annual Meeting, Washington, D.C., Transportation Research Board, 17 pp. [Available online at http://docs.trb.org/prp/12-2119.pdf.]

  • Gebhart, K., and Noland R. B. , 2013: The impact of weather conditions on Capitol bikeshare trips. Proc. Transportation Research Board 92nd Annual Meeting, Washington, DC, Transportation Research Board, 24 pp. [Available online at http://amonline.trb.org/2013-1.264263/13-0563-1-1.274658?qr=1.]

    • Search Google Scholar
    • Export Citation
  • Geiger, R., and Pohl W. , 1954: Revision of the Köppen–Geiger Klimakarte der Erde. Erdkunde,8, 58–61.

  • Greene, W. H., 1997: Econometric Analysis. 3rd ed. Prentice-Hall, 1075 pp.

  • Hanson, S., 1982: The determinants of daily travel-activity patterns: Relative location and sociodemographic factors. Urban Geogr., 3, 179202, doi:10.2747/0272-3638.3.3.179.

    • Search Google Scholar
    • Export Citation
  • Hanson, S., and Hanson P. , 1977: Effects of weather on bicycle travel. Transp. Res. Rec., 629, 4348.

  • Heinen, E., Van Wee B. , and Maat K. , 2010: Commuting by bicycle: An overview of the literature. Transp. Rev., 30, 5996, doi:10.1080/01441640903187001.

    • Search Google Scholar
    • Export Citation
  • Helbich, M., Böcker L. , and Dijst M. J. , 2014: Geographic heterogeneity in cycling under various weather conditions: Evidence from Greater Rotterdam. J. Transport Geogr., 38, 3847, doi:10.1016/j.jtrangeo.2014.05.009.

    • Search Google Scholar
    • Export Citation
  • Höppe, P., 1992: Ein neues Verfahren zur Bestimmung der mittleren Strahlungstemperatur in Frien. Wetter Leben, 44, 147151.

  • KNMI, 2009: Klimaatverandering in Nederland: Aanvullingen op de KNMI’06 klimaatscenario’s.KNMI. [Available online at http://www.knmi.nl/cms/content/67290/aanvullingen_op_de_knmi06_klimaatscenarios_2009.]

  • KNMI, cited 2013: Publically available weather records and climatological data. KNMI. [Available online at http://www.knmi.nl/klimatologie/.]

  • Koetse, M. J., and Rietveld P. , 2009: The impact of climate change and weather on transport: An overview of empirical findings. Transp. Res., 14D, 205221, doi:10.1016/j.trd.2008.12.004.

    • Search Google Scholar
    • Export Citation
  • Konarska, J., Lindberg F. , Larsson A. , Thorsson S , and Holmer B. , 2014: Transmissivity of solar radiation through crowns of single urban trees—Application for outdoor thermal climate modelling. Theor. Appl. Climatol.,doi:10.1007/s00704-013-1000-3, in press.

  • Lewin, A., 2011: Temporal and weather impacts on bicycle volumes. Transportation Research Board of the National Academies, 18 pp. [Available online at http://trid.trb.org/view.aspx?id=1092520.]

  • Lindberg, F., 2012: The SOLWEIG-model. Gothenburg University. [Available online at http://www.gvc.gu.se/english/staff/staff/thorsson-sofia/current-projects/the-solweig-model/.]

  • Lindberg, F., and Grimmond C. S. B. , 2011a: Nature of vegetation and building morphology characteristics across a city: Influence on shadow patterns and mean radiant temperatures in London. Urban Ecosyst., 14, 617634, doi:10.1007/s11252-011-0184-5.

    • Search Google Scholar
    • Export Citation
  • Lindberg, F., and Grimmond C. S. B. , 2011b: The influence of vegetation and building morphology on shadow patterns and mean radiant temperature in urban areas: Model development and evaluation. Theor. Appl. Climatol., 105, 311323, doi:10.1007/s00704-010-0382-8.

    • Search Google Scholar
    • Export Citation
  • Lindberg, F., Holmer B. , and Thorsson S. , 2008: SOLWEIG 1.0 – Modeling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. Int. J. Biometeor., 52, 697713, doi:10.1007/s00484-008-0162-7.

    • Search Google Scholar
    • Export Citation
  • Matzarakis, A., and Mayer H. , 1996: Another kind of environmental stress: Thermal stress. WHO News, 18, 719.

  • Mayer, H., and Höppe P. , 1987: Thermal comfort of man in different urban environments. Theor. Appl. Climatol., 38, 4349, doi:10.1007/BF00866252.

    • Search Google Scholar
    • Export Citation
  • Miranda-Moreno, L., and Nosal T. , 2011: Weather or not to cycle: Temporal trends and impact of weather on cycling in an urban environment. Transp. Res. Rec., 2247, 4252, doi:10.3141/2247-06.

    • Search Google Scholar
    • Export Citation
  • Nankervis, M., 1999: The effect of weather and climate on bicycle commuting. Transp. Res., 33A, 417431, doi:10.1016/S0965-8564(98)00022-6.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1987: Boundary Layer Climates. Methuen, 435 pp.

  • Phung, J., and Rose G. , 2008: Temporal variations in Melbourne’s bike paths. Proc. 30th Australasian Transport Research Forum, Melbourne, Australia, 15 pp. [Available online at http://www.atrf.info/papers/2007/2007_Phung.pdf.]

  • Sabir, M., 2011: Weather and travel behaviour. Ph.D. dissertation, Vrije Universiteit, 138 pp. [Available online at http://trid.trb.org/view.aspx?id=1148919.]

  • Sears, J., Flynn B. S. , Aultman-Hall L. , and Dana G. S. , 2012: To bike or not to bike—Seasonal factors for bicycle commuting. Transp. Res. Rec., 2314, 105111, doi:10.3141/2314-14.

    • Search Google Scholar
    • Export Citation
  • Spencer, P. G., Watts R. A. , Vivanco L. , and Flynn B. S. , 2013: Effect of environmental factors on bicycle commuters in Vermont: Influences of a northern climate. J. Transp. Geogr., 31, 1117, doi:10.1016/j.jtrangeo.2013.05.003.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and Coauthors, Eds., 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Thomas, T., Jaarsma R. , and Tutert B. , 2013: Exploring temporal fluctuations of daily cycling demand on Dutch cycle paths: The influence of weather on cycling. Transportation, 40, 122, doi:10.1007/s11116-012-9398-5.

    • Search Google Scholar
    • Export Citation
  • Thorsson, S., Lindberg F. , Björklund J. , Holmer B. , and Rayner D. P. , 2011: Potential changes in outdoor thermal comfort conditions in Gothenburg, Sweden due to climate change: The influence of urban geometry. Int. J. Climatol., 31, 324335, doi:10.1002/joc.2231.

    • Search Google Scholar
    • Export Citation
  • Tin Tin, S., Woodward A. , Robinson E. , and Ameratunga S. , 2012: Temporal, seasonal and weather effects on cycle volume: An ecological study. Environ. Health, 11 (12), doi:10.1186/1476-069X-11-12.

    • Search Google Scholar
    • Export Citation
  • VDI, 1998: Methods for the human-biometeorological assessment of climate and air hygiene for urban and regional planning. Part I: Climate. VDI 3787, VDI/DIN-Handbuch Reinhaltung der Luft, Band 1b, Düsseldorf, 29 pp.

  • Wooldridge, J. M., 2002: Econometric Analysis of Cross Section and Panel Data. MIT Press, 752 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 13 13 13
PDF Downloads 10 10 10

Integrated Weather Effects on Cycling Shares, Frequencies, and Durations in Rotterdam, the Netherlands

View More View Less
  • 1 Utrecht University, Utrecht, Netherlands
  • | 2 University of Gothenburg, Göteborg, Sweden
Restricted access

Abstract

With the increasing societal interest in climate change, health, accessibility, and liveability and subsequent policy aims to promote active transport modes over car usage, many scholars have investigated the relationship between weather and cycling. Existing studies, however, hardly address the effects of weather on cycling durations and often lack assessments of the combined effects of different meteorological variables and potential nonlinearity of these effects. Drawing on travel diary data from a panel study of 945 Greater Rotterdam respondents (the Netherlands), this paper investigates and compares the effects of different meteorological variables, singly as well as combined, on cycling frequencies, cycling durations, and the exchange between cycling and other transport modes. Results show linear negative effects of precipitation sum and wind speed and nonlinear bell-shaped effects of thermal variables on cycling and opposite effects on car usage. Out of three thermal variables investigated, mean radiant temperature (radiant heat exchange between humans and the environment) and physiological equivalent temperature (an index combining the effects of air temperature, mean radiant temperature, air humidity, and wind speed) better explain cycling behavior than just air temperature. Optimum thermal conditions for cycling were found on days with maximum air temperatures around 24°C, mean radiant temperatures around 52°C, and physiological equivalent temperatures around 30°C. Policy and planning implications are highlighted that could reduce cyclists’ exposures to disadvantageous weather conditions such as heat, precipitation, and wind, at present and in a potentially changing climate.

Corresponding author address: Lars Böcker, Utrecht University, Human Geography and Planning, Heidelberglaan 2 Utrecht, 3584CS Utrecht, Netherlands. E-mail: l.bocker@uu.nl

Abstract

With the increasing societal interest in climate change, health, accessibility, and liveability and subsequent policy aims to promote active transport modes over car usage, many scholars have investigated the relationship between weather and cycling. Existing studies, however, hardly address the effects of weather on cycling durations and often lack assessments of the combined effects of different meteorological variables and potential nonlinearity of these effects. Drawing on travel diary data from a panel study of 945 Greater Rotterdam respondents (the Netherlands), this paper investigates and compares the effects of different meteorological variables, singly as well as combined, on cycling frequencies, cycling durations, and the exchange between cycling and other transport modes. Results show linear negative effects of precipitation sum and wind speed and nonlinear bell-shaped effects of thermal variables on cycling and opposite effects on car usage. Out of three thermal variables investigated, mean radiant temperature (radiant heat exchange between humans and the environment) and physiological equivalent temperature (an index combining the effects of air temperature, mean radiant temperature, air humidity, and wind speed) better explain cycling behavior than just air temperature. Optimum thermal conditions for cycling were found on days with maximum air temperatures around 24°C, mean radiant temperatures around 52°C, and physiological equivalent temperatures around 30°C. Policy and planning implications are highlighted that could reduce cyclists’ exposures to disadvantageous weather conditions such as heat, precipitation, and wind, at present and in a potentially changing climate.

Corresponding author address: Lars Böcker, Utrecht University, Human Geography and Planning, Heidelberglaan 2 Utrecht, 3584CS Utrecht, Netherlands. E-mail: l.bocker@uu.nl
Save