• Allen, G. L., Miller Cowan C. R. , and Power H. , 2006: Acquiring information from simple weather maps: Influences of domain-specific knowledge and general visual-spatial abilities. Learn. Individ. Differ., 16, 337349, doi:10.1016/j.lindif.2007.01.003.

    • Search Google Scholar
    • Export Citation
  • AMS, 1996: Hurricane path now a computer graphic. Bull. Amer. Meteor. Soc., 77, 23482349.

  • Baker, E. J., Broad K. , Czajkowski J. , Meyer R. , and Orlov B. , 2012: Risk perceptions and preparedness among mid-Atlantic coastal residents in advance of Hurricane Sandy, preliminary report. Wharton University of Pennsylvania Working Paper 2012-18, 42 pp. [Available online at http://opim.wharton.upenn.edu/risk/library/WP2012-18_EJB-etal_RiskPerceptions-Sandy.pdf.]

  • Bertin, J., 1983: Semiology of Graphics. University of Wisconsin Press, 415 pp.

  • Blake, E. S., Kimberlain T. B. , Berg R. J. , Cangialosi J. P. , and Beven J. L. II, 2013: Tropical cyclone report Hurricane Sandy (AL182012) 22–29 October 2012. National Hurricane Center Rep., 157 pp. [Available online at www.nhc.noaa.gov/data/tcr/AL182012_Sandy.pdf.]

  • Borland, D., and Taylor R. M. II, 2007: Rainbow color map (still) considered harmful. IEEE Comput. Graphics Appl., 27 (2), 1417, doi:10.1109/MCG.2007.323435.

    • Search Google Scholar
    • Export Citation
  • Breslow, L. A., Ratwani R. M. , and Trafton J. G. , 2009: Cognitive models of the influence of color scale on data visualization tasks. Hum. Factors, 51, 321338, doi:10.1177/0018720809338286.

    • Search Google Scholar
    • Export Citation
  • Brewer, C. A., 1994: Color use guidelines for mapping and visualization. Visualization in Modern Cartography, A. M. MacEachren and D. R. Fraser Taylor, Eds., Elsevier, 123–147.

  • Broad, K., Leiserowitz A. , Weinkle J. , and Steketee M. , 2007: Misinterpretations of the “cone of uncertainty” in Florida during the 2004 hurricane season. Bull. Amer. Meteor. Soc., 88, 651667, doi:10.1175/BAMS-88-5-651.

    • Search Google Scholar
    • Export Citation
  • Bryant, B., Holiner M. , Kroot R. , Sherman-Morris K. , Smylie W. B. , Stryjewski L. , Thomas M. , and Williams C. I. , 2014: Usage of color scales on radar maps. J. Oper. Meteor., 2, 169179, doi:10.15191/nwajom.2014.0214.

    • Search Google Scholar
    • Export Citation
  • Canham, M., and Hegarty M. , 2010: Effects of knowledge and display design on comprehension of complex graphics. Learn. Instr., 20, 155166, doi:10.1016/j.learninstruc.2009.02.014.

    • Search Google Scholar
    • Export Citation
  • Coltekin, A., Heil B. , Garlandini S. , and Fabrikant S. I. , 2009: Evaluating the effectiveness of interactive map interface designs: A case study integrating usability metrics with eye-movement analysis. Cartogr. Geogr. Inf. Sci., 36, 517, doi:10.1559/152304009787340197.

    • Search Google Scholar
    • Export Citation
  • Cox, J., House D. , and Lindell M. , 2013: Visualizing uncertainty in predicted hurricane tracks. Int. J. Uncertainty Quantif., 3, 143156, doi:10.1615/Int.J.UncertaintyQuantification.2012003966.

    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., Morss R. B. , Mmorrow B. H. , and Lazo J. K. , 2012: Creation and communication of hurricane risk information. Bull. Amer. Meteor. Soc., 93, 11331145, doi:10.1175/BAMS-D-11-00150.1.

    • Search Google Scholar
    • Export Citation
  • Deubel, H., and Schneider W. X. , 1996: Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Res., 36, 18271837, doi:10.1016/0042-6989(95)00294-4.

    • Search Google Scholar
    • Export Citation
  • Doore, G. S., and Coauthors, 1993: Guidelines for using color to depict meteorological information. Bull. Amer. Meteor. Soc., 74, 17091713, doi:10.1175/1520-0477(1993)074<1709:GFUCTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fabrikant, S., Hespanha S. , and Hegarty M. , 2010: Cognitively inspired and perceptually salient graphic displays for efficient spatial inference making. Ann. Assoc. Amer. Geogr., 100, 1329, doi:10.1080/00045600903362378.

    • Search Google Scholar
    • Export Citation
  • Garlandini, S., and Fabrikant S. I. , 2009: Evaluating the effectiveness and efficiency of visual variables for geographic information visualization. Spatial Information Theory, K. S. Hornsby et al., Eds., Springer-Verlag, 195–211, doi:10.1007/978-3-642-03832-7_12.

  • Griffith, L. J., and Leonard S. D. , 1997: Association of colors with warning signal words. Int. J. Ind. Ergon., 20, 317325.

  • Healey, C. G., and Enns J. T. , 2012: Attention and visual memory in visualization and computer graphics. IEEE Trans. Visualization Comput. Graphics, 18, 11701188, doi:10.1109/TVCG.2011.127.

    • Search Google Scholar
    • Export Citation
  • Hegarty, M., M. S. Canham, and Fabrikant S. I. , 2010: Thinking about the weather: How display salience and knowledge affect performance in a graphic inference task. J. Exp. Psychol.: Learn. Mem. Cognit., 36, 3753, doi:10.1037/a0017683.

    • Search Google Scholar
    • Export Citation
  • Heitgerd, J. L., and Coauthors, 2008: Community health status indicators: Adding a geospatial component. Prev. Chronic Dis.: Public Health Res. Pract. Policy,5,15. [Available online at www.ncbi.nlm.nih.gov/pmc/articles/PMC2483562/pdf/PCD53A96.pdf.]

  • Hoffman, J. E., and Subramaniam B. , 1995: The role of visual attention in saccadic eye movements. Percept. Psychophys., 57, 787795, doi:10.3758/BF03206794.

    • Search Google Scholar
    • Export Citation
  • Hoffman, R. R., Detweiler M. , Conway J. A. , and Lipton K. , 1993: Some consideration in using color in meteorological displays. Wea. Forecasting, 8, 505517, doi:10.1175/1520-0434(1993)008<0505:SCIUCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kelleher, C., and Wagener T. , 2011: Ten guidelines for effective data visualization in scientific publications. Environ. Modell. Software, 26, 822827, doi:10.1016/j.envsoft.2010.12.006.

    • Search Google Scholar
    • Export Citation
  • Light, A., and Bartlein P. J. , 2004: The end of the rainbow? Color schemes for improved data graphics. Eos, Trans. Amer. Geophys. Union, 85, 385–391, doi:10.1029/2004EO400002.

    • Search Google Scholar
    • Export Citation
  • Lipkus, I. M., 2007: Numeric, verbal, and visual formats of conveying health risks: Suggested best practices and future recommendations. Med. Decis. Making, 27, 696713, doi:10.1177/0272989X07307271.

    • Search Google Scholar
    • Export Citation
  • Mayhorn, C. B., Wolgarter M. S. , and Shaver E. F. , 2004: What does code red mean? Ergon. Des., 12, 12–14, doi:10.1177/106480460401200404.

    • Search Google Scholar
    • Export Citation
  • Mersey, J. E., 1990: Colour and Thematic Map Design: The role of Colour Scheme and Map Complexity in Choropleth Map Communication. University of Toronto Press, 157 pp.

  • Meyer, R., Broad K. , Orlove B. , and Petrovic N. , 2013: Dynamic simulation as an approach to understanding hurricane risk response: Insights from the Stormview Lab. Risk Anal., 33, 15321552, doi:10.1111/j.1539-6924.2012.01935.x.

    • Search Google Scholar
    • Export Citation
  • Monmonier, M., 1991: How to Lie With Maps. University of Chicago Press, 207 pp.

  • Morrow, B. H., Lazo J. K. , Rhome J. , and Feyen J. , 2015: Improving storm surge risk communication: Stakeholder perspectives. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-13-00197.1, in press.

    • Search Google Scholar
    • Export Citation
  • O’Hare, D., and Stenhouse N. , 2009: Under the weather: An evaluation of different modes of presenting meteorological information for pilots. Appl. Ergon., 40, 688693, doi:10.1016/j.apergo.2008.06.007.

    • Search Google Scholar
    • Export Citation
  • Phipps, M., and Rowe S. , 2010: Seeing satellite data. Public Understanding Sci., 19, 311321, doi:10.1177/0963662508098684.

  • Radford, L., Senkbeil J. C. , and Rockman M. , 2013: Suggestions for alternative tropical cyclone warning graphics in the USA. Disaster Prev. Manage., 22, 192209, doi:10.1108/DPM-06-2012-0064.

    • Search Google Scholar
    • Export Citation
  • Rayner, K., 2009: Eye movements and attention in reading, scene perception, and visual search. Quart. J. Exp. Psychol., 62, 14571506, doi:10.1080/17470210902816461.

    • Search Google Scholar
    • Export Citation
  • Severtson, D. J., and Vatovec C. , 2012: The theory-based influence of map features on risk beliefs: Self-reports of what is seen and understood for maps depicting an environmental health hazard. J. Health Commun., 17, 836856, doi:10.1080/10810730.2011.650933.

    • Search Google Scholar
    • Export Citation
  • Severtson, D. J., and Myers J. D. , 2013: The influence of uncertain map features on risk beliefs and perceived ambiguity for maps of modeled cancer risk from air pollution. Risk Anal., 33, 818837, doi:10.1111/j.1539-6924.2012.01893.x.

    • Search Google Scholar
    • Export Citation
  • Sherman-Morris, K., 2005: Enhancing threat: Using cartographic principles to explain differences in hurricane threat perception. Fla. Geogr., 36, 6183. [Available online at http://journals.fcla.edu/flgeog/article/view/76887/75296.]

    • Search Google Scholar
    • Export Citation
  • Silva, S., Madeira J. , and Santos B. S. , 2007: There is more to color scales than meets the eye: A review on the use of color in visualization. 11th Int. Conf. Information Visualization (IV’07), Zurich, Switzerland, IEEE, 943–950. [Available online at http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4272091&tag=1.]

  • Silva, S., Santos B. S. , and Madeira J. , 2011: Using color in visualization: A survey. Comput. Graphics, 35, 320333, doi:10.1016/j.cag.2010.11.015.

    • Search Google Scholar
    • Export Citation
  • Slovic, P., Peters E. , Finucane M. L. , and MacGregor D. G. , 2005: Affect, risk, and decision making. Health Psychol., 24, S35S40, doi:10.1037/0278-6133.24.4.S35.

    • Search Google Scholar
    • Export Citation
  • Weinstein, N. D., and Sandman P. M. , 1993: Some criteria for evaluating risk messages. Risk Anal., 13, 103114, doi:10.1111/j.1539-6924.1993.tb00733.x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 26 26 26
PDF Downloads 22 22 22

Measuring the Effectiveness of the Graphical Communication of Hurricane Storm Surge Threat

View More View Less
  • 1 Department of Geosciences, Mississippi State University, Mississippi State, Mississippi
  • | 2 Department of Psychology, Mississippi State University, Mississippi State, Mississippi
  • | 3 Department of Psychology, California State University, San Marcos, California
Restricted access

Abstract

Color is an important variable in the graphical communication of weather information. The effect of different colors on understanding and perception is not always considered prior to releasing an image to the public. This study tests the influence of color as well as legend values on the effectiveness of communicating storm surge potential. In this study, 40 individuals participated in an eye-tracking experiment in which they responded to eight questions about five different storm scenarios. Color was varied among three palettes (shades of blue, green to red, and yellow to purple), and legends were varied to display categorical values in feet (<3, 3–6, etc.) or text descriptions (low, medium, etc.). Questions measured accuracy, perceived risk, and perceived helpfulness. Overall, accuracy was high and few statistically significant differences were observed across color/legend combinations. Evidence did suggest that the blue values condition may have been the most difficult to interpret. Statistical support for this claim includes longer response times and a greater number of eye fixations on the legend. The feet values condition also led to a greater number of eye fixations on the legend and letter markers than the category text condition. The green–red condition was the strong preference among all groups as the color condition that best informs the public about storm surge risk. This color palette led to slightly higher levels of accuracy and perceived helpfulness, but the differences were not significant.

Corresponding author address: Kathleen Sherman-Morris, P.O. Box 5448, Department of Geosciences, Mississippi State University, Mississippi State, MS 39762. E-mail: kms5@geosci.msstate.edu

Abstract

Color is an important variable in the graphical communication of weather information. The effect of different colors on understanding and perception is not always considered prior to releasing an image to the public. This study tests the influence of color as well as legend values on the effectiveness of communicating storm surge potential. In this study, 40 individuals participated in an eye-tracking experiment in which they responded to eight questions about five different storm scenarios. Color was varied among three palettes (shades of blue, green to red, and yellow to purple), and legends were varied to display categorical values in feet (<3, 3–6, etc.) or text descriptions (low, medium, etc.). Questions measured accuracy, perceived risk, and perceived helpfulness. Overall, accuracy was high and few statistically significant differences were observed across color/legend combinations. Evidence did suggest that the blue values condition may have been the most difficult to interpret. Statistical support for this claim includes longer response times and a greater number of eye fixations on the legend. The feet values condition also led to a greater number of eye fixations on the legend and letter markers than the category text condition. The green–red condition was the strong preference among all groups as the color condition that best informs the public about storm surge risk. This color palette led to slightly higher levels of accuracy and perceived helpfulness, but the differences were not significant.

Corresponding author address: Kathleen Sherman-Morris, P.O. Box 5448, Department of Geosciences, Mississippi State University, Mississippi State, MS 39762. E-mail: kms5@geosci.msstate.edu
Save