Projected Changes in Greater St. Louis Summer Heat Stress in NARCCAP Simulations

Claire Steinweg Department of Geological and Atmospheric Sciences, Iowa State University of Science and Technology, Ames, Iowa

Search for other papers by Claire Steinweg in
Current site
Google Scholar
PubMed
Close
and
William J. Gutowski Jr. Department of Geological and Atmospheric Sciences, Iowa State University of Science and Technology, Ames, Iowa

Search for other papers by William J. Gutowski Jr. in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A matrix of four GCM–RCM combinations from the NARCCAP project is examined for changes in heat stress between contemporary and future scenario climates in the greater St. Louis region in Missouri. The analysis also compares the contemporary simulations with observation-based results from the North American Regional Reanalysis. The character of heat-stress days in one of the RCMs, the CRCM, tends to be like that of heat-stress days in the North American Regional Reanalysis, with high temperatures accompanied by high humidity. In contrast, heat-stress days in the other RCM, the Weather Research and Forecasting Model with Grell-Devenyi Cumulus Scheme (WRFG), have high temperature, but typically the humidity is similar to or even slightly drier than climatological values.

Although specific magnitudes of change differ between the simulations, all show a marked increase in projected heat stress, from a variety of perspectives. Increases in temperature contribute more to these increases than do increases in humidity, though both are relevant. All simulations agree that the frequency of excessive heat advisories and excessive heat warnings as defined by the National Weather Service could increase by midcentury, with multiple excessive heat advisories occurring every year. The day of first heat stress each summer could occur 3–4 weeks earlier as part of a more prolonged period when the region might experience heat stress each year. Although St. Louis has adopted measures to reduce health threats during heat-stress events, the measures consume human and economic resources; much more frequent and longer-lasting heat-stress events in the future have the potential to impose substantial costs on the region.

Corresponding author address: William J. Gutowski Jr., Dept. of Geological and Atmospheric Sciences, Iowa State University of Science and Technology, 3021 Agronomy, Ames, IA 50011. E-mail: gutowski@iastate.edu

Abstract

A matrix of four GCM–RCM combinations from the NARCCAP project is examined for changes in heat stress between contemporary and future scenario climates in the greater St. Louis region in Missouri. The analysis also compares the contemporary simulations with observation-based results from the North American Regional Reanalysis. The character of heat-stress days in one of the RCMs, the CRCM, tends to be like that of heat-stress days in the North American Regional Reanalysis, with high temperatures accompanied by high humidity. In contrast, heat-stress days in the other RCM, the Weather Research and Forecasting Model with Grell-Devenyi Cumulus Scheme (WRFG), have high temperature, but typically the humidity is similar to or even slightly drier than climatological values.

Although specific magnitudes of change differ between the simulations, all show a marked increase in projected heat stress, from a variety of perspectives. Increases in temperature contribute more to these increases than do increases in humidity, though both are relevant. All simulations agree that the frequency of excessive heat advisories and excessive heat warnings as defined by the National Weather Service could increase by midcentury, with multiple excessive heat advisories occurring every year. The day of first heat stress each summer could occur 3–4 weeks earlier as part of a more prolonged period when the region might experience heat stress each year. Although St. Louis has adopted measures to reduce health threats during heat-stress events, the measures consume human and economic resources; much more frequent and longer-lasting heat-stress events in the future have the potential to impose substantial costs on the region.

Corresponding author address: William J. Gutowski Jr., Dept. of Geological and Atmospheric Sciences, Iowa State University of Science and Technology, 3021 Agronomy, Ames, IA 50011. E-mail: gutowski@iastate.edu
Save
  • Anderson, G. B., and Bell M. L. , 2011: Heat waves in the United States: Mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities. Environ. Health Perspect., 119, 210218, doi:10.1289/ehp.1002313.

    • Search Google Scholar
    • Export Citation
  • Basu, R., and Ostro B. D. , 2008: A multicounty analysis identifying the populations vulnerable to mortality associated with high ambient temperature in California. Amer. J. Epidemiol., 168, 632637, doi:10.1093/aje/kwn170.

    • Search Google Scholar
    • Export Citation
  • Berg, P., Feldmann H. , and Panitz H.-J. , 2012: Bias correction of high resolution regional climate model data. J. Hydrol., 448–449, 8092, doi:10.1016/j.jhydrol.2012.04.026.

    • Search Google Scholar
    • Export Citation
  • Bouchama, A., and Knochel J. P. , 2002: Heat stroke. N. Engl. J. Med., 346, 19781988, doi:10.1056/NEJMra011089.

  • Centers for Disease Control and Prevention, cited 2013: Extreme heat and your health. [Available online at http://www.cdc.gov/extremeheat/.]

  • Chow, W. T. L., Chuang W.-C. , and Gober P. , 2012: Vulnerability to extreme heat in metropolitan Phoenix: Spatial, temporal, and demographic dimensions. Prof. Geogr., 64, 286302, doi:10.1080/00330124.2011.600225.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2014: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136, doi:10.1017/CBO9781107415324.024.

  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model: CCSM3. J. Climate, 19, 21222143, doi:10.1175/JCLI3761.1.

  • Flato, G. M., cited 2012: The third generation Coupled Global Climate Model (CGCM3). Environment Canada Canadian Centre for Climate Modelling and Analysis. [Available online at www.ec.gc.ca/ccmac-cccma/default.asp?lang=En&n=1299529F-1.]

  • Fouillet, A., and Coauthors, 2008: Has the impact of heat waves on mortality changed in France since the European heat wave of summer 2003? A study of the 2006 heat wave. Int. J. Epidemiol., 37, 309317, doi:10.1093/ije/dym253.

    • Search Google Scholar
    • Export Citation
  • Greene, S., Kalkstein L. S. , Mills D. M. , and Samenow J. , 2011: An examination of climate change on extreme heat events and climate–mortality relationships in large U.S. cities. Wea. Climate Soc., 3, 281292, doi:10.1175/WCAS-D-11-00055.1.

    • Search Google Scholar
    • Export Citation
  • Harlan, S. L., Declet-Barreto J. H. , Stefanov W. L. , and Petitti D. B. , 2013: Neighborhood effects on heat deaths: Social and environmental predictors of vulnerability in Maricopa County, Arizona. Environ. Health Perspect., 121, 197204, doi:10.1289/ehp.1104625.

    • Search Google Scholar
    • Export Citation
  • Hayhoe, K., Sheridan S. , Kalkstein L. , and Greene S. , 2010: Climate change, heat waves and mortality projections for Chicago. J. Great Lakes Res., 36, 6573, doi:10.1016/j.jglr.2009.12.009.

    • Search Google Scholar
    • Export Citation
  • Kalkstein, L. S., and Greene J. S. , 1997: An evaluation of climate/mortality relationships in large U.S. cities and the possible impacts of a climate change. Environ. Health Perspect., 105, 8493, doi:10.1289/ehp.9710584.

    • Search Google Scholar
    • Export Citation
  • Kalkstein, A. J., and Sheridan S. C. , 2007: The social impacts of the heat–health watch/warning system in Phoenix, Arizona: Assessing the perceived risk and response of the public. Int. J. Biometeor., 52, 4355, doi:10.1007/s00484-006-0073-4.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., Ebisuzaki W. , Woollen J. , Yang S.-K. , Hnilo J. J. , Fiorino M. , and Potter G. L. , 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kosatsky, T., 2005: The 2003 European heat waves. Eurosurveillance, 10 (7). [Available online at http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=552.]

    • Search Google Scholar
    • Export Citation
  • Li, D., and Bou-Zeid E. , 2013: Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. J. Appl. Meteor. Climatol., 52, 20512064, doi:10.1175/JAMC-D-13-02.1.

    • Search Google Scholar
    • Export Citation
  • Li, H., Sheffield J. , and Wood E. F. , 2010: Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res., 115, D10101, doi:10.1029/2009JD012882.

    • Search Google Scholar
    • Export Citation
  • Maier, G., Grundstein A. , Jang W. , Li C. , Naeher L. P. , and Shepherd M. , 2014: Assessing the performance of a vulnerability index during oppressive heat across Georgia, United States. Wea. Climate Soc., 6, 253263, doi:10.1175/WCAS-D-13-00037.1.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., and Coauthors, cited 2011: The North American Regional Climate Change Assessment Program dataset. National Center for Atmospheric Research Earth System Grid Data Portal. [Available online at http://www.earthsystemgrid.org/project/NARCCAP.html.]

  • Mearns, L. O., and Coauthors, 2012: The North American Regional Climate Change Assessment Program: Overview of phase I results. Bull. Amer. Meteor. Soc., 93, 13371362, doi:10.1175/BAMS-D-11-00223.1.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., and Coauthors, 2013: Climate change projections of the North American Regional Climate Change Assessment Program (NARCCAP). Climatic Change, 120, 965975, doi:10.1007/s10584-013-0831-3.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Tebaldi C. , 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, doi:10.1126/science.1098704.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. D. Solomon et al., Eds., Cambridge University Press, 747–845.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Mirchandani, H. G., McDonald G. , Hood I. C. , and Fonseca C. , 1996: Heat-related deaths in Philadelphia—1993. Amer. J. Forensic Med. Pathol., 17, 106108, doi:10.1097/00000433-199606000-00004.

    • Search Google Scholar
    • Export Citation
  • Nakićenović, N., and Swart R. , Eds., 2000: Special Report on Emissions Scenarios. Cambridge University Press, 570 pp.

  • National Weather Service, cited 2012a: Excessive heat briefing page. [Available online at http://www.crh.noaa.gov/lsx/?n=excessiveheatbriefing.]

  • National Weather Service, cited 2012b: The historic 2012 heat wave. [Available online at http://www.crh.noaa.gov/lsx/?n=07_08_2012.]

  • Peng, R. D., Bobb J. F. , Tebaldi C. , McDaniel L. , Bell M. L. , and Dominici F. , 2010: Toward a quantitative estimate of future heat wave mortality under global climate change. Environ. Health Perspect., 119, 701706, doi:10.1289/ehp.1002430.

    • Search Google Scholar
    • Export Citation
  • Reid, C. E., O’Neill M. S. , Gronlund C. J. , Brines S. J. , Brown D. G. , Diez-Roux A. V. , and Schwartz J. , 2009: Mapping community determinants of heat vulnerability. Environ. Health Perspect., 117, 17301736, doi:10.1289/ehp.0900683.

    • Search Google Scholar
    • Export Citation
  • Saha, M. V., Davis R. E. , and Hondula D. M. , 2014: Mortality displacement as a function of heat event strength in 7 US cities. Amer. J. Epidemiol., 179, 467474, doi:10.1093/aje/kwt264.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., and McFarlane N. A. , 2004: The variability of modeled tropical precipitation. J. Atmos. Sci., 61, 19932015, doi:10.1175/1520-0469(2004)061<1993:TVOMTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Semenza, J. C., Rubin C. H. , Falter K. H. , Selanikio J. D. , Flanders W. D. , Howe H. L. , and Wilhelm J. L. , 1996: Heat-related deaths during the July 1995 heat wave in Chicago. N. Engl. J. Med., 335, 8490, doi:10.1056/NEJM199607113350203.

    • Search Google Scholar
    • Export Citation
  • Sheridan, S. C., 2007: A survey of public perception and response to heat warnings across four North American cities: An evaluation of municipal effectiveness. Int. J. Biometeor., 52, 315, doi:10.1007/s00484-006-0052-9.

    • Search Google Scholar
    • Export Citation
  • Sheridan, S. C., Kalkstein A. J. , and Kalkstein L. S. , 2009: Trends in heat-related mortality in the United States, 1975–2004. Nat. Hazards, 50, 145160, doi:10.1007/s11069-008-9327-2.

    • Search Google Scholar
    • Export Citation
  • Smoyer, K. E., 1998a: A comparative analysis of heat waves and associated mortality in St. Louis, Missouri—1980 and 1995. Int. J. Biometeor., 42, 4450, doi:10.1007/s004840050082.

    • Search Google Scholar
    • Export Citation
  • Smoyer, K. E., 1998b: Putting risk in its place: Methodological considerations for investigating extreme event health risk. Soc. Sci. Med., 47, 18091824, doi:10.1016/S0277-9536(98)00237-8.

    • Search Google Scholar
    • Export Citation
  • Steadman, R. G., 1979a: The assessment of sultriness. Part I: A temperature–humidity index based on human physiology and clothing science. J. Appl. Meteor., 18, 861873, doi:10.1175/1520-0450(1979)018<0861:TAOSPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steadman, R. G., 1979b: The assessment of sultriness. Part II: Effects of wind, extra radiation and barometric pressure on apparent temperature. J. Appl. Meteor., 18, 874885, doi:10.1175/1520-0450(1979)018<0874:TAOSPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steadman, R. G., 1984: A universal scale of apparent temperature. J. Climate Appl. Meteor., 23, 16741687, doi:10.1175/1520-0450(1984)023<1674:AUSOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vandentorren, S., and Empereur-Bissonnet P. , 2005: Health impact of the 2003 heatwave in France. Extreme Weather Events and Public Health Responses, W. Kirch, B. Menne and R. Bertollini, Eds., Springer, 81–88.

  • Wallace, J. M., and Hobbs P. V. , 1977: Atmospheric Science: An Introductory Survey. Academic Press, 467 pp.

  • White-Newsome, J. L., Ekwurzel B. , Baer-Schultz M. , Ebi K. L. , O’Neill M. S. , and Anderson G. B. , 2014: Survey of county-level heat preparedness and response to the 2011 summer heat in 30 U.S. states. Environ. Health Perspect., 122, 573579.

    • Search Google Scholar
    • Export Citation
  • WMO, 2004: World Meteorological Organization statement on the status of global climate in 2003. World Meteorological Organization, 12 pp.

  • Zanobetti, A., and Schwartz J. , 2008: Temperature and mortality in nine US cities. Epidemiology, 19, 563570, doi:10.1097/EDE.0b013e31816d652d.

    • Search Google Scholar
    • Export Citation
  • Zhang, K., Li Y. , Schwartz J. D. , and O’Neill M. S. , 2014: What weather variables are important in predicting heat-related mortality? A new application of statistical learning methods. Environ. Res., 132, 350359, doi:10.1016/j.envres.2014.04.004.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., and Shepherd J. M. , 2010: Atlanta’s urban heat island under extreme heat conditions and potential mitigation strategies. Nat. Hazards, 52, 639668, doi:10.1007/s11069-009-9406-z.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1046 757 95
PDF Downloads 178 49 5