• ARMA, 2011: The bitumen roofing industry: A global prospective. Asphalt Roofing Manufacturers Association, 78 pp. [Available online at http://www.asphaltroofing.org/shop-arma/bitumen-roofing-industry-global-perspective.]

  • Blair, S. F., , Deroche D. R. , , Boustead J. M. , , Leighton J. W. , , Barjenbruch B. L. , , and Gargan W. P. , 2011: A radar-based assessment of the detectability of giant hail. Electron. J. Severe Storms Meteor., 6, 130.

    • Search Google Scholar
    • Export Citation
  • Brown, T. M., , Giammanco I. M. , , and Robinett D. S. , 2012: Observations of hailstone characteristics utilizing a new instrumentation platform. 26th Conf. on Severe Local Storms, Nashville, TN, P47. [Available online at https://ams.confex.com/ams/26SLS/webprogram/Paper211977.html.]

  • Changnon, D., , and Changnon, S. A. Jr., 1997: Surrogate data to estimate crop-hail loss. J. Appl. Meteor., 36, 12021210, doi:10.1175/1520-0450(1997)036<1202:SDTECH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., Jr., 1970: Hailstreaks. J. Atmos. Sci., 27, 109125, doi:10.1175/1520-0469(1970)027<0109:H>2.0.CO;2.

  • Changnon, S. A., Jr., 1971: Hailfall characteristics related to crop damage. J. Appl. Meteor., 10, 270274, doi:10.1175/1520-0450(1971)010<0270:HCRTCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., Jr., 1972: Examples of economic losses from hail in the United States. J. Appl. Meteor., 11, 11281137, doi:10.1175/1520-0450(1972)011<1128:EOELFH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., Jr., 1977: The scales of hail. J. Appl. Meteor., 16, 626648, doi:10.1175/1520-0450(1977)016<0626:TSOH>2.0.CO;2.

  • Changnon, S. A., Jr., 1999: Data and approaches for determining hail risk in the contiguous United States. J. Appl. Meteor., 38, 17301739, doi:10.1175/1520-0450(1999)038<1730:DAAFDH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., Jr., , Changnon D. , , and Hilberg S. D. , 2009: Hailstorms across the nation: An atlas about hail and its damages. Illinois State Water Survey Contract Report 2009-12, 92 pp.

  • Collins, G. F., , and Howe G. M. , 1964: Weather and extended coverage. Final Rep., National Board of Fire Underwriters, TRC Service Corp., 51 pp.

  • Cook, G. R., 1995: Hail loss potential in the U.S. Occasional Paper OP-4, Institute for Property Loss Reduction, 6 pp.

  • Crenshaw, V., , and Koontz J. D. , 2001: Simulated hail damage and impact resistance test procedures. RCI Interface, RCI Inc., Raleigh, NC, May, 4–10.

  • Dawson, D. T., , Mansell E. R. , , Jung Y. , , Wicker L. J. , , Kumjian M. R. , , and Xue M. , 2014: Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail. J. Atmos. Sci., 71, 276299, doi:10.1175/JAS-D-13-0118.1.

    • Search Google Scholar
    • Export Citation
  • Devlin, P., 1997: Insurance industry strategies and efforts in mitigating hail loss. Proc. Conf. on Hail: The Damage is Here, Overland Park, KS, Employers Reinsurance Corp., 33–40.

  • Dixon, C. R., , Masters F. J. , , Prevatt D. O. , , Gurley K. R. , , Brown T. M. , , Peterka J. A. , , and Kubena M. E. , 2014: The influence of unsealing on the wind resistance of asphalt shingles. J. Wind Eng. Ind. Aerodyn., 130, 3040, doi:10.1016/j.jweia.2014.03.016.

    • Search Google Scholar
    • Export Citation
  • FM Approvals, 2005: Specification test standard for impact resistance testing of rigid roofing materials by impacting with freezer ice balls (FM 4473). FM Approvals, West Gloucester, RI, 10 pp.

  • Friedman, D. G., 1976: Hail suppressions impact on the property insurance industry. TASH Rep. 11, Illinois State Water Survey, 69 pp.

  • Giammanco, I. M., , and Brown T. M. , 2014: Observations of hailstone characteristics in multicell and supercell thunderstorms. Special Symp. on Severe Local Storms: The Current State of the Science and Understanding Impacts, Amer. Meteor. Soc., Atlanta, GA, P819. [Available online at https://ams.confex.com/ams/94Annual/webprogram/Paper236838.html.]

  • Herzog, R. F., 2012: RICOWI hailstorm investigation program report. RCI Interface, RCI Inc., Raleigh, NC, November, 33–40.

  • Herzog, R. F., , Morrison S. J. , , Patnode S. A. , , and Green J. R. , 2012: Ice ball impact testing of siding. 27th RCI Intl. Convention and Trade Show, Dallas, TX, 142–146.

  • Hill, C., 1996: Mayday! Weatherwise, 49, 2528, doi:10.1080/00431672.1996.9925405.

  • IBHS, 1998: A homeowners’ guide to roofing and hail. Institute for Business & Home Safety, 6 pp.

  • IBHS, 2004: Hail storm investigation: Investigation into insured losses and damages to single-family homes resulting from the April 5, 2003 north Texas hailstorms. Institute for Business & Home Safety, 48 pp.

  • Johnson, J. T., , MacKeen P. L. , , Witt A. , , Mitchell E. D. , , Stumpf G. J. , , Eilts M. D. , , and Thomas K. W. , 1998: The storm cell identification and tracking algorithm: An enhanced WSR-88D algorithm Wea. Forecasting, 13, 263276, doi:10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., , and Knight N. C. , 2001: Hailstorms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 223–248.

  • Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part II: Warm and cold season applications. J. Oper. Meteor., 1, 243264, doi:10.15191/nwajom.2013.0120.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., , and Ryzhkov A. V. , 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, doi:10.1175/2007JAMC1874.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., , and Ryzhkov A. V. , 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 20422060, doi:10.1175/JAS-D-11-0125.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., , Khain A. P. , , Benmoshe N. , , Ilotoviz E. , , Ryzhkov A. V. , , and Phillips V. T. J. , 2014: The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteor. Climatol., 53, 18201843, doi:10.1175/JAMC-D-13-0354.1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., , Smith T. M. , , Hondl K. , , Stumpf G. J. , , and Witt A. , 2006: A real-time, three-dimensional, rapidly updating, heterogeneous radar merger technique for reflectivity, velocity, and derived products. Wea. Forecasting, 21, 802823, doi:10.1175/WAF942.1.

    • Search Google Scholar
    • Export Citation
  • Lemons, H., 1942: Hail in American agriculture. Econ. Geogr., 18, 363378, doi:10.2307/141444.

  • Marshall, T., , Herzog R. , , Morrison S. , , and Smith S. , 2002: Hail damage threshold sizes for common roofing materials. 21st Conf. on Severe Local Storms, San Antonio, TX. Amer. Meteor. Soc., P3.2. [Available online at https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_45858.htm.]

  • National Weather Service Radar Operations Center, 2013: WSR-88D Dual Polarization Deployment Progress. Accessed 14 May 2013, 6 pp. [Available online at https://www.roc.noaa.gov/WSR88D/PublicDocs/DualPol/DPstatus.pdf.]

  • NCDC, 2011: Storm data and unusual weather phenomena with late reports and corrections. National Climatic Data Center, 944 pp.

  • Ortega, K. L., , Smith T. M. , , Manross K. L. , , Kolodziej A. G. , , Scharfenberg K. A. , , Witt A. , , and Gourley J. J. , 2009: The Severe Hazards Analysis and Verification Experiment. Bull. Amer. Meteor. Soc., 90, 15191530, doi:10.1175/2009BAMS2815.1.

    • Search Google Scholar
    • Export Citation
  • Petrocchi, P., 1982: Automatic detection of hail by radar. Environmental Research Paper 796, AFGL-TR-82-0277, Hanscom AFB, 33 pp.

  • Petty, S., , Petty M. , , and Kasberg T. , 2009: Evaluation of hail-strike damage to asphalt shingles based on hailstone size, roof pitch, direction of incoming storm, and facing roof elevation. RCI Interface, RCI Inc., Raleigh, NC, May/June, 4–10.

  • Picca, J. C., , and Ryzhkov A. V. , 2012: A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Mon. Wea. Rev., 140, 13851403, doi:10.1175/MWR-D-11-00112.1.

    • Search Google Scholar
    • Export Citation
  • RICOWI, 2012: Hailstorm investigation Dallas/Fort Worth, TX May 24, 2011. Roofing Industry Committee on Weather Issues, 218 pp.

  • Roth, R. J., 1949: Crop-hail insurance in the United States. Bull. Amer. Meteor. Soc., 30, 5658.

  • Ryzhkov, A. V., , Kumjian M. R. , , Ganson S. M. , , and Khain A. P. , 2013a: Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling. J. Appl. Meteor. Climatol., 52, 28492870, doi:10.1175/JAMC-D-13-073.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., , Kumjian M. R. , , Ganson S. M. , , and Zhang P. , 2013b: Polarimetric radar characteristics of melting hail. Part II: Practical implications. J. Appl. Meteor. Climatol., 52, 28712886, doi:10.1175/JAMC-D-13-074.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, K., 2013: Dallas–Ft. Worth: “The hail belt.” RCI Interface, RCI Inc., Raleigh, NC, February, 16–19.

  • Snyder, J. C., , Bluestein H. B. , , Venkatesh V. , , and Frasier S. J. , 2013: Observations of polarimetric signatures in supercells by an X-band mobile Doppler radar. Mon. Wea. Rev., 141, 329, doi:10.1175/MWR-D-12-00068.1.

    • Search Google Scholar
    • Export Citation
  • Towery, N. G., , Morgan, G. M. Jr., , and Changnon, S. A. Jr., 1976: Examples of the wind factor in crop-hail damage. J. Appl. Meteor., 15, 11161120, doi:10.1175/1520-0450(1976)015<1116:EOTWFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Underwriters Laboratory, 2012: UL 2218: Standard for impact resistance of prepared roof covering materials. Underwriters Laboratory, 16 pp.

  • Wilson, C. J., , Ortega K. L. , , and Lakshmanan V. , 2009: Evaluating multi-radar, multi-sensor hail diagnosis with high resolution hail reports. 25th Conf. on Interactive Information Processing Systems, Phoenix, AZ, P2.9. [Available online at https://ams.confex.com/ams/pdfpapers/146206.pdf.]

  • Witt, A., , Eilts M. D. , , Stumpf G. J. , , Johnson J. T. , , Mitchell E. D. W. , , and Thomas K. W. , 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, doi:10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 327 327 102
PDF Downloads 270 270 64

Evaluating Hail Damage Using Property Insurance Claims Data

View More View Less
  • 1 Insurance Institute for Business & Home Safety, Richburg, South Carolina
© Get Permissions
Restricted access

Abstract

A series of thunderstorms on 24 May 2011 produced significant hail in the Dallas–Fort Worth (DFW) metroplex, resulting in an estimated $876.8 million (U.S. dollars) in insured losses to property and automobiles, according to the Texas Department of Insurance. Insurance claims and policy-in-force data were obtained from five insurance companies for more than 67 000 residential properties located in 20 ZIP codes. The methodology for selecting the 20 ZIP codes is described. This study evaluates roofing material type with regard to resiliency to hailstone impacts and relative damage costs associated with roofing systems versus wall systems. A comparison of Weather Surveillance Radar-1988 Doppler (WSR-88D) radar-estimated hail sizes and damage levels seen in the claims data is made. Recommendations for improved data collection and quality of insurance claims data, as well as guidance for future property insurance claims studies, are summarized. Studies such as these allow insurance underwriters and claims adjusters to better evaluate the relative performance and vulnerability of various roofing systems and other building components as a function of hail size. They also highlight the abilities and limitations of utilizing radar horizontal reflectivity-based hail sizes, local storm reports, and Storm Data for claims processing. Large studies of this kind may be able to provide guidance to consumers, designers, and contractors concerning building product selections for improved resiliency to hailstorms, and give a glimpse into how product performance varies with storm exposure. Reducing hail losses would reduce the financial burden on property owners and insurers and reduce the amount of building materials being disposed of after storms.

Corresponding author address: Tanya M. Brown, Insurance Institute for Business & Home Safety, 5335 Richburg Rd., Richburg, SC 29729. E-mail: tbrown@ibhs.org

Abstract

A series of thunderstorms on 24 May 2011 produced significant hail in the Dallas–Fort Worth (DFW) metroplex, resulting in an estimated $876.8 million (U.S. dollars) in insured losses to property and automobiles, according to the Texas Department of Insurance. Insurance claims and policy-in-force data were obtained from five insurance companies for more than 67 000 residential properties located in 20 ZIP codes. The methodology for selecting the 20 ZIP codes is described. This study evaluates roofing material type with regard to resiliency to hailstone impacts and relative damage costs associated with roofing systems versus wall systems. A comparison of Weather Surveillance Radar-1988 Doppler (WSR-88D) radar-estimated hail sizes and damage levels seen in the claims data is made. Recommendations for improved data collection and quality of insurance claims data, as well as guidance for future property insurance claims studies, are summarized. Studies such as these allow insurance underwriters and claims adjusters to better evaluate the relative performance and vulnerability of various roofing systems and other building components as a function of hail size. They also highlight the abilities and limitations of utilizing radar horizontal reflectivity-based hail sizes, local storm reports, and Storm Data for claims processing. Large studies of this kind may be able to provide guidance to consumers, designers, and contractors concerning building product selections for improved resiliency to hailstorms, and give a glimpse into how product performance varies with storm exposure. Reducing hail losses would reduce the financial burden on property owners and insurers and reduce the amount of building materials being disposed of after storms.

Corresponding author address: Tanya M. Brown, Insurance Institute for Business & Home Safety, 5335 Richburg Rd., Richburg, SC 29729. E-mail: tbrown@ibhs.org
Save