Effects of Urban Vegetation on Mitigating Exposure of Vulnerable Populations to Excessive Heat in Cleveland, Ohio

Juan Declet-Barreto Natural Resources Defense Council, Washington, D. C.

Search for other papers by Juan Declet-Barreto in
Current site
Google Scholar
PubMed
Close
,
Kim Knowlton Natural Resources Defense Council, and Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York

Search for other papers by Kim Knowlton in
Current site
Google Scholar
PubMed
Close
,
G. Darrel Jenerette Department of Botany and Plant Sciences, University of California, Riverside, Riverside, California

Search for other papers by G. Darrel Jenerette in
Current site
Google Scholar
PubMed
Close
, and
Alexander Buyantuev Department of Geography and Planning, University at Albany, State University of New York, Albany, New York

Search for other papers by Alexander Buyantuev in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Hot weather is a threat to human health, especially in cities, where urban heat islands (UHIs) are elevating temperatures already on the rise from global climate change. Increased vegetation can help reduce temperatures and exposure to heat hazards. Here, an ensemble of geographically weighted regressions (GWR) on land surface temperature (LST) is conducted for May–October to estimate potential LST reductions from increased vegetation and to assess the effect of temperature reductions among vulnerable populations in Cleveland, Ohio. Possible tree canopy increases are applied to the results, and it is found that LST reductions can range from 6.4° to 0.5°C for May–October and are strongest from May to July. Potential LST reductions vary spatially according to possible canopy increases and are highest in suburban fringe neighborhoods and lower in downtown areas. Among populations at high heat-related health risks, the percentage of the population 65 years of age or older in Cleveland is negatively associated with LST, while percentages of Hispanics and those with low educational achievement are most positively associated with higher LST. The areas that have a high percentage of Hispanic also have the lowest potential temperature reductions from increased vegetation. Neighborhoods with the highest potential temperature reductions had the highest percentages of whites. Three subpopulations associated with high heat health risks are negatively correlated (African Americans and the elderly) or not correlated (persons living in poverty) with LST, and the relationships to LST reduction potential for all three are not statistically significant. Estimates of the effect of vegetation increases on LST can be used to target specific neighborhoods for UHI mitigation under possible and achievable policy-prescribed tree canopy scenarios in Cleveland.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/WCAS-D-15-0026.s1.

Corresponding author address: Juan Declet-Barreto, Natural Resources Defense Council, 1152 15th St. NW Suite 300, Washington, DC 20005. E-mail: jdeclet-barreto@nrdc.org

Abstract

Hot weather is a threat to human health, especially in cities, where urban heat islands (UHIs) are elevating temperatures already on the rise from global climate change. Increased vegetation can help reduce temperatures and exposure to heat hazards. Here, an ensemble of geographically weighted regressions (GWR) on land surface temperature (LST) is conducted for May–October to estimate potential LST reductions from increased vegetation and to assess the effect of temperature reductions among vulnerable populations in Cleveland, Ohio. Possible tree canopy increases are applied to the results, and it is found that LST reductions can range from 6.4° to 0.5°C for May–October and are strongest from May to July. Potential LST reductions vary spatially according to possible canopy increases and are highest in suburban fringe neighborhoods and lower in downtown areas. Among populations at high heat-related health risks, the percentage of the population 65 years of age or older in Cleveland is negatively associated with LST, while percentages of Hispanics and those with low educational achievement are most positively associated with higher LST. The areas that have a high percentage of Hispanic also have the lowest potential temperature reductions from increased vegetation. Neighborhoods with the highest potential temperature reductions had the highest percentages of whites. Three subpopulations associated with high heat health risks are negatively correlated (African Americans and the elderly) or not correlated (persons living in poverty) with LST, and the relationships to LST reduction potential for all three are not statistically significant. Estimates of the effect of vegetation increases on LST can be used to target specific neighborhoods for UHI mitigation under possible and achievable policy-prescribed tree canopy scenarios in Cleveland.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/WCAS-D-15-0026.s1.

Corresponding author address: Juan Declet-Barreto, Natural Resources Defense Council, 1152 15th St. NW Suite 300, Washington, DC 20005. E-mail: jdeclet-barreto@nrdc.org

Supplementary Materials

    • Supplemental Materials (PDF 318.79 KB)
Save
  • Arnfield, A., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 126, doi:10.1002/joc.859.

    • Search Google Scholar
    • Export Citation
  • Balling, R. C., and Brazel S. W. , 1987: The impact of rapid urbanization on pan evaporation in Phoenix, Arizona. J. Climatol., 7, 593597, doi:10.1002/joc.3370070607.

    • Search Google Scholar
    • Export Citation
  • Bobb, J. F., Peng R. D. , Bell M. L. , and Dominici F. , 2014: Heat-related mortality and adaptation to heat in the United States. Environ. Health Perspect., 122, 811816, doi:10.1289/ehp.1307392.

    • Search Google Scholar
    • Export Citation
  • Boumans, R. J., Phillips D. L. , Victery W. , and Fontaine T. D. , 2014: Developing a model for effects of climate change on human health and health–environment interactions: Heat stress in Austin, Texas. Urban Climate, 8, 7899, doi:10.1016/j.uclim.2014.03.001.

    • Search Google Scholar
    • Export Citation
  • Buscail, C., Upegui E. , and Viel J.-F. , 2012: Mapping heatwave health risk at the community level for public health action. Int. J. Health Geogr., 11, 38, doi:10.1186/1476-072X-11-38.

    • Search Google Scholar
    • Export Citation
  • Buyantuyev, A., and Wu J. , 2010: Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecol., 25, 1733, doi:10.1007/s10980-009-9402-4.

    • Search Google Scholar
    • Export Citation
  • Chow, W. T. L., Pope R. L. , Martin C. A. , and Brazel A. J. , 2011: Observing and modeling the nocturnal park cool island of an arid city: Horizontal and vertical impacts. Theor. Appl. Climatol., 103, 197211, doi:10.1007/s00704-010-0293-8.

    • Search Google Scholar
    • Export Citation
  • Cleveland City Planning Commission, 2014a: 2014 Neighborhood fact sheets. Accessed 6 July 2015. [Available online at http://planning.city.cleveland.oh.us/2010census/factsheets.php.]

  • Cleveland City Planning Commission, 2014b: 8 ideas for vacant land re-use in Cleveland. Accessed 10 October 2014. [Available online at http://planning.city.cleveland.oh.us/ftp/8IdeasForVacantLandReuseCleveland.pdf.]

  • Connors, J. P., Galletti C. S. , and Chow W. T. , 2013: Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landscape Ecol., 28, 271283, doi:10.1007/s10980-012-9833-1.

    • Search Google Scholar
    • Export Citation
  • Cuyahoga County Geographical Information Systems, 2016: Cities shapefile. Accessed 27 September 2016. [Available online at http://gis.cuyahogacounty.us/en-US/GIS-Data.aspx.]

  • Cuyahoga County Planning Commission, 2013a: Cuyahoga County GIS parcels dataset. Accessed 6 July 2015. [Available online at ftp.gis.cuyahogacounty.us.]

  • Cuyahoga County Planning Commission, 2013b: Cuyahoga County urban tree canopy assessment. Accessed 6 July 2015. [Available online at http://planning.co.cuyahoga.oh.us/canopy/downloads.html.]

  • Declet-Barreto, J., Brazel A. J. , Martin C. A. , Chow W. T. , and Harlan S. L. , 2013: Creating the park cool island in an inner-city neighborhood: Heat mitigation strategy for Phoenix, AZ. Urban Ecosyst., 16, 617635, doi:10.1007/s11252-012-0278-8.

    • Search Google Scholar
    • Export Citation
  • Filleul, L., and Coauthors, 2006: The relation between temperature, ozone, and mortality in nine French cities during the heat wave of 2003. Environ. Health Perspect., 114, 13441347, doi:10.1289/ehp.8328.

    • Search Google Scholar
    • Export Citation
  • Foody, G., 2003: Geographical weighting as a further refinement to regression modelling: An example focused on the NDVI–rainfall relationship. Remote Sens. Environ., 88, 283293, doi:10.1016/j.rse.2003.08.004.

    • Search Google Scholar
    • Export Citation
  • Fotheringham, A. S., Brunsdon C. , and Charlton M. , 2003: Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. John Wiley & Sons, 284 pp.

    • Search Google Scholar
    • Export Citation
  • Frey, W. H., and Myers D. , 2005: Racial segregation in U.S. metropolitan areas and cities, 1990–2000: Patterns, trends, and explanations. Population Studies Center Research Rep. 05-573, 66 pp. [Available online at http://www.frey-demographer.org/reports/R-2005-2_RacialSegragationTrends.pdf.]

  • Gallo, K., McNab A. , Karl T. , Brown J. , Hood J. , and Tarpley J. , 1993: The use of a vegetation index for assessment of the urban heat island effect. Remote Sens., 14, 22232230, doi:10.1080/01431169308954031.

    • Search Google Scholar
    • Export Citation
  • Galster, G. C., 1990: White flight from racially integrated neighbourhoods in the 1970s: The Cleveland experience. Urban Stud., 27, 385399, doi:10.1080/00420989020080341.

    • Search Google Scholar
    • Export Citation
  • Gasparrini, A., and Coauthors, 2015: Temporal variation in heat–mortality associations: A multicountry study. Environ. Health Perspect., 123, 12001207, doi:10.1289/ehp.1409070.

    • Search Google Scholar
    • Export Citation
  • Harlan, S. L., Brazel A. J. , Prashad L. , Stefanov W. L. , and Larsen L. , 2006: Neighborhood microclimates and vulnerability to heat stress. Soc. Sci. Med., 63, 28472863, doi:10.1016/j.socscimed.2006.07.030.

    • Search Google Scholar
    • Export Citation
  • Harlan, S. L., Declet-Barreto J. H. , Stefanov W. L. , and Petitti D. B. , 2013: Neighborhood effects on heat deaths: Social and environmental predictors of vulnerability in Maricopa County, Arizona. Environ. Health Perspect., 121, 197204, doi:10.1289/ehp.1104625.

    • Search Google Scholar
    • Export Citation
  • Hattis, D., Ogneva-Himmelberger Y. , and Ratick S. , 2012: The spatial variability of heat-related mortality in Massachusetts. Appl. Geogr., 33, 4552, doi:10.1016/j.apgeog.2011.07.008.

    • Search Google Scholar
    • Export Citation
  • Heisler, G. M., and Brazel A. J. , 2010: The urban physical environment: Temperature and urban heat islands. Urban Ecosystem Ecology, Agron. Monogr., No. 55, American Society of Agronomy, 29–56.

  • Hewitt, V., Mackres E. , and Shickman K. , 2014: Cool policies for cool cities: Best practices for mitigating urban heat islands in North American cities. American Council for an Energy-Efficient Economy Research Rep. U1405, 15 pp. [Available online at http://www.aceee.org/research-report/u1405.]

  • Heynen, N., 2003: The scalar production of injustice within the urban forest. Antipode, 35, 980998, doi:10.1111/j.1467-8330.2003.00367.x.

    • Search Google Scholar
    • Export Citation
  • Heynen, N., 2006: Green urban political ecologies: Toward a better understanding of inner-city environmental change. Environ. Plann., 38A, 499516, doi:10.1068/a37365.

    • Search Google Scholar
    • Export Citation
  • Heynen, N., Perkins H. A. , and Roy P. , 2006: The political ecology of uneven urban green space: The impact of political economy on race and ethnicity in producing environmental inequality in Milwaukee. Urban Aff. Rev., 42, 325, doi:10.1177/1078087406290729.

    • Search Google Scholar
    • Export Citation
  • Hondula, D. M., Davis R. E. , Leisten M. J. , Saha M. V. , Veazey L. M. , and Wegner C. R. , 2012: Fine-scale spatial variability of heat-related mortality in Philadelphia County, USA, from 1983–2008: A case-series analysis. Environ. Health, 11, 16, doi:10.1186/1476-069X-11-16.

    • Search Google Scholar
    • Export Citation
  • Imhoff, M. L., Zhang P. , Wolfe R. E. , and Bounoua L. , 2010: Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ., 114, 504513, doi:10.1016/j.rse.2009.10.008.

    • Search Google Scholar
    • Export Citation
  • Ivajnšič, D., Kaligarič M. , and Žiberna I. , 2014: Geographically weighted regression of the urban heat island of a small city. Appl. Geogr., 53, 341353, doi:10.1016/j.apgeog.2014.07.001.

    • Search Google Scholar
    • Export Citation
  • Jenerette, G. D., Harlan S. L. , Brazel A. , Jones N. , Larsen L. , and Stefanov W. L. , 2007: Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landscape Ecol., 22, 353365, doi:10.1007/s10980-006-9032-z.

    • Search Google Scholar
    • Export Citation
  • Jenerette, G. D., Harlan S. L. , Stefanov W. L. , and Martin C. A. , 2011: Ecosystem services and urban heat riskscape moderation: Water, green spaces, and social inequality in Phoenix, USA. Ecol. Appl., 21, 26372651, doi:10.1890/10-1493.1.

    • Search Google Scholar
    • Export Citation
  • Jesdale, B. M., Morello-Frosch R. , and Cushing L. , 2013: The racial/ethnic distribution of heat risk–related land cover in relation to residential segregation. Environ. Health Perspect., 121, 811817, doi:10.1289/ehp.1205919.

    • Search Google Scholar
    • Export Citation
  • Jin, S., Yang L. , Danielson P. , Homer C. , Fry J. , and Xian G. , 2013: A comprehensive change detection method for updating the National Land Cover Database to circa 2011. Remote Sens. Environ., 132, 159175, doi:10.1016/j.rse.2013.01.012.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. P., and Wilson J. S. , 2009: The socio-spatial dynamics of extreme urban heat events: The case of heat-related deaths in Philadelphia. Appl. Geogr., 29, 419434, doi:10.1016/j.apgeog.2008.11.004.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. P., Wilson J. S. , and Luber G. C. , 2009: Socioeconomic indicators of heat-related health risk supplemented with remotely sensed data. Int. J. Health Geogr., 8, 57, doi:10.1186/1476-072X-8-57.

    • Search Google Scholar
    • Export Citation
  • Kaiser, R., Le Tertre A. , Schwartz J. , Gotway C. A. , Daley W. R. , and Rubin C. H. , 2007: The effect of the 1995 heat wave in Chicago on all-cause and cause-specific mortality. Amer. J. Public Health, 97 (Suppl. 1), S158S162, doi:10.2105/AJPH.2006.100081.

    • Search Google Scholar
    • Export Citation
  • Kottek, M., Grieser J. , Beck C. , Rudolf B. , and Rubel F. , 2006: World map of the Köppen–Geiger climate classification updated. Meteor. Z., 15, 259263, doi:10.1127/0941-2948/2006/0130.

    • Search Google Scholar
    • Export Citation
  • Kovats, R. S., Hajat S. , and Wilkinson P. , 2004: Contrasting patterns of mortality and hospital admissions during hot weather and heat waves in greater London, UK. Occup. Environ. Med., 61, 893898, doi:10.1136/oem.2003.012047.

    • Search Google Scholar
    • Export Citation
  • Li, D., and Bou-Zeid E. , 2013: Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. J. Appl. Meteor. Climatol., 52, 20512064, doi:10.1175/JAMC-D-13-02.1.

    • Search Google Scholar
    • Export Citation
  • Li, S., Zhao Z. , Miaomiao X. , and Wang Y. , 2010: Investigating spatial non-stationary and scale-dependent relationships between urban surface temperature and environmental factors using geographically weighted regression. Environ. Modell. Software, 25, 17891800, doi:10.1016/j.envsoft.2010.06.011.

    • Search Google Scholar
    • Export Citation
  • Ma, W., Chen Y.-H. , and Zhou J. , 2008: Quantitative analysis of land surface temperature-vegetation indexes relationship based on remote sensing. Proc. 21st ISPRS Congress, Youth Forum, Beijing, China, International Society for Photogrammetry and Remote Sensing, 261–264. [Available online at http://www.isprs.org/proceedings/XXXVII/congress/6b_pdf/43.pdf.]

  • Maselli, F., 2002: Improved estimation of environmental parameters through locally calibrated multivariate regression analyses. Photogramm. Eng. Remote Sens., 68, 11631172.

    • Search Google Scholar
    • Export Citation
  • McGeehin, M. A., and Mirabelli M. , 2001: The potential impacts of climate variability and change on temperature-related morbidity and mortality in the United States. Environ. Health Perspect., 109 (Suppl. 2), 185, doi:10.2307/3435008.

    • Search Google Scholar
    • Export Citation
  • McMichael, A. J., and Coauthors, 2008: International study of temperature, heat and urban mortality: The ‘ISOTHERM’ project. Int. J. Epidemiol., 37, 11211131, doi:10.1093/ije/dyn086.

    • Search Google Scholar
    • Export Citation
  • Mennis, J., 2006: Mapping the results of geographically weighted regression. Cartographic J., 43, 171179, doi:10.1179/000870406X114658.

    • Search Google Scholar
    • Export Citation
  • Minnesota Population Center, 2016a: American community survey: 5-year data [2006–2010, block groups and larger areas]. National Historical Geographic Information System, version 2.0. Subset used: Tables B15002: Sex by educational attainment for the population 25 years and over; and C17002: Ratio of income to poverty level in the past 12 months. Accessed 22 September 2016. [Available online at http://www.nhgis.org/.]

  • Minnesota Population Center, 2016b: 2010 Census: SF1a—P & H Tables [Block groups and larger areas]. National Historical Geographic Information System, version 2.0. Subset used: Tables P7: Hispanic or Latino origin by race (total races tallied); P12: Sex by age; and P25: Households by presence of people 65 years and over, household size, and household type. Accessed 22 September 2016. [Available online at http://www.nhgis.org/.]

  • Mohamed, M., 2013: Summer land surface temperature: Small-local variation in intro-urban environment in El Paso, TX. Ph.D. dissertation, The University of Texas at El Paso, 145 pp.

  • NCEI, 2015: Daily summaries for air temperature at Cleveland Burke Lake Airport, OH. NCEI, accessed 22 September 2016. [Available online at http://www.ncdc.noaa.gov/cdo-web/.]

  • Oke, T. R., 1997: The changing climatic environments: Urban climates and global environmental change. Applied Climatology Principals and Practice, R. D. Thompson and A. Perry, Eds., Routledge, 273–287.

  • Oke, T. R., 2006: Towards better scientific communication in urban climate. Theor. Appl. Climatol., 84, 179190, doi:10.1007/s00704-005-0153-0.

    • Search Google Scholar
    • Export Citation
  • Onishi, A., Cao X. , Ito T. , Shi F. , and Imura H. , 2010: Evaluating the potential for urban heat-island mitigation by greening parking lots. Urban For. Urban Greening, 9, 323332, doi:10.1016/j.ufug.2010.06.002.

    • Search Google Scholar
    • Export Citation
  • Pattenden, S., and Coauthors, 2010: Ozone, heat and mortality: Acute effects in 15 British conurbations. Occup. Environ. Med., 67, 699707, doi:10.1136/oem.2009.051714.

    • Search Google Scholar
    • Export Citation
  • Perkins, H., Heynen N. , and Wilson J. , 2004: Inequitable access to urban reforestation: The impact of urban political economy on housing tenure and urban forests. Cities, 21, 291299, doi:10.1016/j.cities.2004.04.002.

    • Search Google Scholar
    • Export Citation
  • Reid, C. E., and Coauthors, 2012: Evaluation of a heat vulnerability index on abnormally hot days: An environmental public health tracking study. Environ. Health Perspect., 120, 715720, doi:10.1289/ehp.1103766.

    • Search Google Scholar
    • Export Citation
  • Ruddell, D. M., Harlan S. L. , Grossman-Clarke S. , and Buyantuyev A. , 2010: Risk and exposure to extreme heat in microclimates of Phoenix, AZ. Geospatial Techniques in Urban Hazard and Disaster Analysis, P. S. Showalter and Y. Lu, Eds., Geotechnologies and the Environment, Vol. 2, Springer, 179–202, doi:10.1007/978-90-481-2238-7_9.

  • Salamanca, F., Georgescu M. , Mahalov A. , Moustaoui M. , and Wang M. , 2014: Anthropogenic heating of the urban environment due to air conditioning. J. Geophys. Res. Atmos., 119, 59495965, doi:10.1002/2013JD021225.

    • Search Google Scholar
    • Export Citation
  • Sheridan, S. C., Kalkstein A. J. , and Kalkstein L. S. , 2009: Trends in heat-related mortality in the United States, 1975–2004. Nat. Hazards, 50, 145160, doi:10.1007/s11069-008-9327-2.

    • Search Google Scholar
    • Export Citation
  • Stone, B., Vargo J. , Liu P. , Habeeb D. , DeLucia A. , Trail M. , Hu Y. , and Russell A. , 2014: Avoided heat-related mortality through climate adaptation strategies in three US cities. PloS One, 9, e100852, doi:10.1371/journal.pone.0100852.

    • Search Google Scholar
    • Export Citation
  • Su, Y.-F., Foody G. M. , and Cheng K.-S. , 2012: Spatial non-stationarity in the relationships between land cover and surface temperature in an urban heat island and its impacts on thermally sensitive populations. Landscape Urban Plann., 107, 172180, doi:10.1016/j.landurbplan.2012.05.016.

    • Search Google Scholar
    • Export Citation
  • Sun, D., and Kafatos M. , 2007: Note on the NDVI–LST relationship and the use of temperature-related drought indices over North America. Geophys. Res. Lett., 34, L24406, doi:10.1029/2007GL031485.

    • Search Google Scholar
    • Export Citation
  • Sustainable Cleveland, 2013: Cleveland Climate Action Plan: Building thriving and healthy neighborhoods. [Available online at https://d3n8a8pro7vhmx.cloudfront.net/sustainablecleveland/pages/149/attachments/original/1461798511/Cleveland_Climate_Action_Plan.pdf?1461798511.]

  • Szymanowski, M., and Kryza M. , 2011: Application of geographically weighted regression for modelling the spatial structure of urban heat island in the city of Wroclaw (SW Poland). Procedia Environ. Sci., 3, 8792, doi:10.1016/j.proenv.2011.02.016.

    • Search Google Scholar
    • Export Citation
  • Tucker, C. J., 1979: Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ., 8, 127150, doi:10.1016/0034-4257(79)90013-0.

    • Search Google Scholar
    • Export Citation
  • Uejio, C. K., Willhelmi O. V. , Golden J. S. , Mills D. M. , Gulino S. P. , and Samenow J. P. , 2011: Intra-urban societal vulnerability to extreme heat: The role of heat exposure and the built environment, socioeconomics, and neighborhood stability. Health Place, 17, 498507, doi:10.1016/j.healthplace.2010.12.005.

    • Search Google Scholar
    • Export Citation
  • U.S. Census Bureau, 2014: State and county QuickFacts: Cleveland (city), Ohio. Accessed 18 October 2016. [Available online at http://quickfacts.census.gov/qfd/states/39/3916000.html.]

  • USGS, 2016: USGS global visualization viewer. Accessed 5 May 2016. [Available online at http://glovis.usgs.gov.]

  • Voogt, J. A., and Oke T. , 1998: Effects of urban surface geometry on remotely-sensed surface temperature. Int. J. Remote Sens., 19, 895920, doi:10.1080/014311698215784.

    • Search Google Scholar
    • Export Citation
  • Voogt, J. A., and Oke T. R. , 2003: Thermal remote sensing of urban climates. Remote Sens. Environ., 86, 370384, doi:10.1016/S0034-4257(03)00079-8.

    • Search Google Scholar
    • Export Citation
  • White-Newsome, J. L., Brines S. J. , Brown D. G. , Dvonch J. T. , Gronlund C. J. , Zhang K. , Oswald E. M. , and O’Neill M. S. , 2013: Validating satellite-derived land surface temperature with in situ measurements: A public health perspective. Environ. Health Perspect., 121, 925931, doi:10.1289/ehp.1206176.

    • Search Google Scholar
    • Export Citation
  • White-Newsome, J. L., Ekwurzel B. , Baer-Schultz M. , Ebi K. L. , O’Neill M. S. , and Anderson G. B. , 2014a: Survey of county-level heat preparedness and response to the 2011 summer heat in 30 U.S. states. Environ. Health Perspect., 122, 573574, doi:10.1289/ehp.1306693.

    • Search Google Scholar
    • Export Citation
  • White-Newsome, J. L., and Coauthors, 2014b: Strategies to reduce the harmful effects of extreme heat events: A four-city study. Int. J. Environ. Res. Public Health, 11, 19601988, doi:10.3390/ijerph110201960.

    • Search Google Scholar
    • Export Citation
  • Yip, F., and Coauthors, 2008: The impact of excess heat events in Maricopa County, Arizona: 2000–2005. Int. J. Biometeor., 52, 765772, doi:10.1007/s00484-008-0169-0.

    • Search Google Scholar
    • Export Citation
  • Yuan, F., and Roy S. S. , 2007: Analysis of the relationship between NDVI and climate variables in Minnesota using geographically weighted regression and spatial interpolation. Proc. ASPRS 2007 Annual Conf., Tampa, FL, American Society for Photogrammetry and Remote Sensing, 784–789.

  • Yue, W., Xu J. , Tan W. , and Xu L. , 2007: The relationship between land surface temperature and NDVI with remote sensing: Application to Shanghai Landsat 7 ETM+ data. Int. J. Remote Sens., 28, 32053226, doi:10.1080/01431160500306906.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3666 1868 149
PDF Downloads 1617 237 19