Modeling Financial Losses Resulting from Tornadoes in European Countries

Jürgen Grieser Risk Management Solutions, London, United Kingdom

Search for other papers by Jürgen Grieser in
Current site
Google Scholar
PubMed
Close
and
Francesca Terenzi Risk Management Solutions, London, United Kingdom

Search for other papers by Francesca Terenzi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tornadoes are a notorious, common threat to human life and property in the United States. Although less common, violent tornadoes are also reported in Europe. The authors aim for an estimation of the average annual loss ratio of European buildings due to tornadoes. An aggregated loss model is used that takes as input the tornado intensity distribution over the Fujita scale (F scale), the distribution of tornado footprint sizes per F class, the vulnerability of European buildings, and the average occurrence rate of tornadoes. Information about these variables is taken from the European Severe Weather Database and, where needed, from the U.S. Storm Prediction Center tornado database, which contains about 16 times more records. However, both databases are biased. Weak tornadoes are underrepresented. Therefore a bias-corrected tornado intensity distribution is used, with its uncertainty taken from the literature. Individual tornadoes are modeled as moving Rankine vortices creating elliptic footprints with correlated length and width. This allows for the estimation of the area fraction of a tornado footprint with lower wind speeds than the maximum wind speed, which is generally used to attribute an intensity. This approach is applied to define effective vulnerability functions of European buildings. A major result is that an expected 90% of the tornadoes contribute only about 1% to the average loss, while the rare F4 tornadoes contribute more than 40% of losses. Given that most national tornado databases in Europe contain tornado records for recent years only and few (if any) violent tornadoes, observed losses can lead to a remarkable underestimation of tornado risk in Europe.

Corresponding author address: Risk Management Solutions Ltd., Peninsular House, 30 Monument Street, London EC3R 8NB, United Kingdom. E-mail: juergen.grieser@rms.com

Abstract

Tornadoes are a notorious, common threat to human life and property in the United States. Although less common, violent tornadoes are also reported in Europe. The authors aim for an estimation of the average annual loss ratio of European buildings due to tornadoes. An aggregated loss model is used that takes as input the tornado intensity distribution over the Fujita scale (F scale), the distribution of tornado footprint sizes per F class, the vulnerability of European buildings, and the average occurrence rate of tornadoes. Information about these variables is taken from the European Severe Weather Database and, where needed, from the U.S. Storm Prediction Center tornado database, which contains about 16 times more records. However, both databases are biased. Weak tornadoes are underrepresented. Therefore a bias-corrected tornado intensity distribution is used, with its uncertainty taken from the literature. Individual tornadoes are modeled as moving Rankine vortices creating elliptic footprints with correlated length and width. This allows for the estimation of the area fraction of a tornado footprint with lower wind speeds than the maximum wind speed, which is generally used to attribute an intensity. This approach is applied to define effective vulnerability functions of European buildings. A major result is that an expected 90% of the tornadoes contribute only about 1% to the average loss, while the rare F4 tornadoes contribute more than 40% of losses. Given that most national tornado databases in Europe contain tornado records for recent years only and few (if any) violent tornadoes, observed losses can lead to a remarkable underestimation of tornado risk in Europe.

Corresponding author address: Risk Management Solutions Ltd., Peninsular House, 30 Monument Street, London EC3R 8NB, United Kingdom. E-mail: juergen.grieser@rms.com
Save
  • Bissolli, P., Grieser J. , Dotzek N. , and Welsch M. , 2007: Tornadoes in Germany 1950–2003 and their relation to particular weather conditions. Global Planet. Change, 57, 124138, doi:10.1016/j.gloplacha.2006.11.007.

    • Search Google Scholar
    • Export Citation
  • Brázdil, R., Chromá K. , Dobrovolnỳ P. , and Černoch Z. , 2012: The tornado history of the Czech lands, AD 1119–2010. Atmos. Res., 118, 193204, doi:10.1016/j.atmosres.2012.06.019.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2004: On the relationship of tornado path length and width to intensity. Wea. Forecasting, 19, 310319, doi:10.1175/1520-0434(2004)019<0310:OTROTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., Trapp R. , and Bluestein H. , 2001: Tornadoes and tornadic storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 167–221.

  • Doswell, C. A., III, Brooks H. E. , and Dotzek N. , 2009: On the implementation of the enhanced Fujita scale in the USA. Atmos. Res., 93, 554563, doi:10.1016/j.atmosres.2008.11.003.

    • Search Google Scholar
    • Export Citation
  • Dotzek, N., 2003: An updated estimate of tornado occurrence in Europe. Atmos. Res., 67-68, 153161, doi:10.1016/S0169-8095(03)00049-8.

    • Search Google Scholar
    • Export Citation
  • Dotzek, N., Grieser J. , and Brooks H. E. , 2003: Statistical modeling of tornado intensity distributions. Atmos. Res., 67-68, 163187, doi:10.1016/S0169-8095(03)00050-4.

    • Search Google Scholar
    • Export Citation
  • Dotzek, N., Kurgansky M. V. , Grieser J. , Feuerstein B. , and Névir P. , 2005: Observational evidence for exponential tornado intensity distributions over specific kinetic energy. Geophys. Res. Lett., 32, L24813, doi:10.1029/2005GL024583.

    • Search Google Scholar
    • Export Citation
  • ESSL, 2015: Corporate report on the 8 July 2015 tornado of Mira (VE), Italy. European Severe Storms Laboratory, 7 pp. [Available online at http://www.essl.org/cms/wp-content/uploads/20150902-Mira-Tornado-of-8-July-2015-Report.pdf.]

  • Feuerstein, B., Dotzek N. , and Grieser J. , 2005: Assessing a tornado climatology from global tornado intensity distributions. J. Climate, 18, 585596, doi:10.1175/JCLI-3285.1.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., and Pearson A. D. , 1973: Results of FPP classification of 1971 and 1972 tornadoes. Preprints, Eighth Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 142–145.

  • Gayà, M., 2011: Tornadoes and severe storms in Spain. Atmos. Res., 100, 334343, doi:10.1016/j.atmosres.2010.10.019.

  • Grazulis, T., 2001: The Tornado, Nature’s Ultimate Windstorm. University of Oklahoma Press, 324 pp.

  • Groenemeijer, P., and Kühne T. , 2014: A climatology of tornadoes in Europe: Results from the European Severe Weather Database. Mon. Wea. Rev., 142, 47754790, doi:10.1175/MWR-D-14-00107.1.

    • Search Google Scholar
    • Export Citation
  • Grünwald, S., and Brooks H. E. , 2011: Relationship between sounding derived parameters and the strength of tornadoes in Europe and the USA from reanalysis data. Atmos. Res., 100, 479488, doi:10.1016/j.atmosres.2010.11.011.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D., and Coauthors, 2013: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis, T. Stocker et al., Eds., Cambridge University Press, 159–254.

  • Holland, A. P., Riordan A. J. , and Franklin E. C. , 2006: A simple model for simulating tornado damage in forests. J. Appl. Meteor. Climatol., 45, 15971611, doi:10.1175/JAM2413.1.

    • Search Google Scholar
    • Export Citation
  • Holzer, A. M., 2001: Tornado climatology of Austria. Atmos. Res., 56, 203211, doi:10.1016/S0169-8095(00)00073-9.

  • Kahraman, A., and Markowski P. M. , 2014: Tornado climatology of Turkey. Mon. Wea. Rev., 142, 23452352, doi:10.1175/MWR-D-13-00364.1.

  • Kurgansky, M., 2000: The statistical distribution of intense moist convective, spiral vortices in the atmosphere. Dokl. Earth Sci., 371, 408410.

    • Search Google Scholar
    • Export Citation
  • Marcinoniene, I., 2003: Tornadoes in Lithuania in the period of 1950–2002 including analysis of the strongest tornado of 29 May 1981. Atmos. Res., 67-68, 475484, doi:10.1016/S0169-8095(03)00060-7.

    • Search Google Scholar
    • Export Citation
  • Matsangouras, I. T., Nastos P. T. , Bluestein H. B. , and Sioutas M. V. , 2013: A climatology of tornadic activity over Greece based on historical records. Int. J. Climatol., 34, 25382555, doi:10.1002/joc.3857.

    • Search Google Scholar
    • Export Citation
  • McDonald, J. R., Metha K. C. , and Mani S. , 2006: A recommendation for an enhanced Fujita scale (EF-scale), revision 2. Texas Tech University Wind Science and Engineering Research Center Rep., 111 pp. [Available online at http://www.depts.ttu.edu/nwi/Pubs/FScale/EFScale.pdf.]

  • Meaden, G. T., 1976: Tornadoes in Britain: Their intensities and distribution in space and time. J. Meteor., 1, 242251.

  • Monastersky, R., 1999: Oklahoma tornado sets wind record. Sci. News, 155, 308, doi:10.2307/4011396.

  • Paul, F., 2001: A developing inventory of tornadoes in France. Atmos. Res., 56, 269280, doi:10.1016/S0169-8095(00)00077-6.

  • Rauhala, J., Brooks H. E. , and Schultz D. M. , 2012: Tornado climatology of Finland. Mon. Wea. Rev., 140, 14461456, doi:10.1175/MWR-D-11-00196.1.

    • Search Google Scholar
    • Export Citation
  • Sioutas, M. V., 2003: Tornadoes and waterspouts in Greece. Atmos. Res., 67-68, 645656, doi:10.1016/S0169-8095(03)00078-4.

  • Trenberth, K., and Coauthors, 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.

  • Verbout, S. M., Brooks H. , Leslie L. M. , and Schultz D. M. , 2006: Evolution of the U.S. tornado database: 1954–2003. Wea. Forecasting, 21, 8693, doi:10.1175/WAF910.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1368 860 60
PDF Downloads 413 90 5