New Tools for Comparing Beliefs about the Timing of Recurrent Events with Climate Time Series Datasets

Mathew Alexander Stiller-Reeve Uni Research Climate, Uni Research AS, and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Mathew Alexander Stiller-Reeve in
Current site
Google Scholar
PubMed
Close
,
David B. Stephenson Department of Mathematics and Computer Science, University of Exeter, Exeter, United Kingdom

Search for other papers by David B. Stephenson in
Current site
Google Scholar
PubMed
Close
, and
Thomas Spengler Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Thomas Spengler in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

For climate services to be relevant and informative for users, scientific data definitions need to match users’ perceptions or beliefs. This study proposes and tests novel yet simple methods to compare beliefs of timing of recurrent climatic events with empirical evidence from multiple historical time series. The methods are tested by applying them to the onset date of the monsoon in Bangladesh, where several scientific monsoon definitions can be applied, yielding different results for monsoon onset dates. It is a challenge to know which monsoon definition compares best with people’s beliefs. Time series from eight different scientific monsoon definitions in six regions are compared with respondent beliefs from a previously completed survey concerning the monsoon onset.

Beliefs about the timing of the monsoon onset are represented probabilistically for each respondent by constructing a probability mass function (PMF) from elicited responses about the earliest, normal, and latest dates for the event. A three-parameter circular modified triangular distribution (CMTD) is used to allow for the possibility (albeit small) of the onset at any time of the year. These distributions are then compared to the historical time series using two approaches: likelihood scores, and the mean and standard deviation of time series of dates simulated from each belief distribution.

The methods proposed give the basis for further iterative discussion with decision-makers in the development of eventual climate services. This study uses Jessore, Bangladesh, as an example and finds that a rainfall definition, applying a 10 mm day−1 threshold to NCEP–NCAR reanalysis (Reanalyis-1) data, best matches the survey respondents’ beliefs about monsoon onset.

Denotes Open Access content.

Corresponding author address: Mathew Stiller-Reeve, Bjerknes Centre for Climate Research, Allegaten 55, 5007 Bergen, Norway. E-mail: mathew.reeve@uni.no

Abstract

For climate services to be relevant and informative for users, scientific data definitions need to match users’ perceptions or beliefs. This study proposes and tests novel yet simple methods to compare beliefs of timing of recurrent climatic events with empirical evidence from multiple historical time series. The methods are tested by applying them to the onset date of the monsoon in Bangladesh, where several scientific monsoon definitions can be applied, yielding different results for monsoon onset dates. It is a challenge to know which monsoon definition compares best with people’s beliefs. Time series from eight different scientific monsoon definitions in six regions are compared with respondent beliefs from a previously completed survey concerning the monsoon onset.

Beliefs about the timing of the monsoon onset are represented probabilistically for each respondent by constructing a probability mass function (PMF) from elicited responses about the earliest, normal, and latest dates for the event. A three-parameter circular modified triangular distribution (CMTD) is used to allow for the possibility (albeit small) of the onset at any time of the year. These distributions are then compared to the historical time series using two approaches: likelihood scores, and the mean and standard deviation of time series of dates simulated from each belief distribution.

The methods proposed give the basis for further iterative discussion with decision-makers in the development of eventual climate services. This study uses Jessore, Bangladesh, as an example and finds that a rainfall definition, applying a 10 mm day−1 threshold to NCEP–NCAR reanalysis (Reanalyis-1) data, best matches the survey respondents’ beliefs about monsoon onset.

Denotes Open Access content.

Corresponding author address: Mathew Stiller-Reeve, Bjerknes Centre for Climate Research, Allegaten 55, 5007 Bergen, Norway. E-mail: mathew.reeve@uni.no
Save
  • Ahmed, A., 1994: Variability of rainfall and duration of the summer monsoon, and their relationships with monsoon onset dates in Bangladesh. Proceedings of the International Conference on Monsoon Prediction and Variability, WMO/TD-619, WCRP-84, 320327.

  • Ahmed, R., and Karmakar S. , 1993: Arrival and withdrawal dates of the summer monsoon on Bangladesh. Int. J. Climatol., 13, 727740, doi:10.1002/joc.3370130703.

    • Search Google Scholar
    • Export Citation
  • Ashfaq, M., Shi Y. , Tung W.-W. , Trapp R. J. , Gao X. , Pal J. S. , and Diffenbaugh N. S. , 2009: Suppression of south Asian summer monsoon precipitation in the 21st century. Geophys. Res. Lett., 36, L01704, doi:10.1029/2008GL036500.

    • Search Google Scholar
    • Export Citation
  • Back, W. E., Boles W. W. , and Fry G. T. , 2000: Defining triangular probability distributions from historical cost data. J. Constr. Eng. Manage., 126, 2937, doi:10.1061/(ASCE)0733-9364(2000)126:1(29).

    • Search Google Scholar
    • Export Citation
  • Briand, L. C., Freimut B. , and Vollei F. , 2000: Assessing the cost-effectiveness of inspections by combining project data and expert opinion. Proceedings: 11th International Symposium on Software Reliability Engineering; ISSRE 2000, IEEE, 124–135, doi:10.1109/ISSRE.2000.885866.

  • Brooks, M. S., 2013: Accelerating innovation in climate services: The 3 E’s for climate service providers. Bull. Amer. Meteor. Soc., 94, 807819, doi:10.1175/BAMS-D-12-00087.1.

    • Search Google Scholar
    • Export Citation
  • Buontempo, C., Hewitt C. D. , Doblas-Reyes F. J. , and Dessai S. , 2014: Climate service development, delivery and use in Europe at monthly to inter-annual timescales. Climate Risk Manage., 6, 15, doi:10.1016/j.crm.2014.10.002.

    • Search Google Scholar
    • Export Citation
  • Fontaine, B., Louvet S. , and Roucou P. , 2008: Definition and predictability of an OLR‐based West African monsoon onset. Int. J. Climatol., 28, 17871798, doi:10.1002/joc.1674.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., and Kumar K. R. , 2006: The Asian monsoon—Agriculture and economy. The Asian Monsoon, Environmental Sciences, Springer, 651–683.

  • Galway, L. A., 2007: Subjective probability distribution elicitation in cost risk analysis: A review. Tech. Rep. 410, Rand Corporation, 21 pp.

  • Hoeting, J. A., Madigan D. , Raftery A. E. , and Volinsky C. T. , 1999: Bayesian model averaging: A tutorial. Stat. Sci., 14, 382417.

  • Johnson, D., 1997: The triangular distribution as a proxy for the beta distribution in risk analysis. Statistician, 46, 387398, doi:10.1111/1467-9884.00091.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kotz, S., and van Dorp J. R. , 2004: Beyond Beta: Other Continuous Families of Distributions with Bounded Support and Applications. World Scientific Publishing, 308 pp.

  • Lemos, M. C., 2008: What influences innovation adoption by water managers? Climate information use in Brazil and the United States. J. Amer. Water Resour. Assoc., 44, 13881396, doi:10.1111/j.1752-1688.2008.00231.x.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B. C., and Smith A. , 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Marimo, P., Kaplan T. R. , Mylne K. , and Sharpe M. , 2015: Communication of uncertainty in temperature forecasts. Wea. Forecasting, 30, 522, doi:10.1175/WAF-D-14-00016.1.

    • Search Google Scholar
    • Export Citation
  • Marx, S. M., Weber E. U. , Orlove B. S. , Leiserowitz A. , Krantz D. H. , Roncoli C. , and Phillips J. , 2007: Communication and mental processes: Experiential and analytic processing of uncertain climate information. Global Environ. Change, 17, 4758, doi:10.1016/j.gloenvcha.2006.10.004.

    • Search Google Scholar
    • Export Citation
  • Matsumoto, J., 1997: Seasonal transition of summer rainy season over Indochina and adjacent monsoon region. Adv. Atmos. Sci., 14, 231245, doi:10.1007/s00376-997-0022-0.

    • Search Google Scholar
    • Export Citation
  • Miles, E. L., Snover A. K. , Binder L. C. W. , Sarachik E. S. , Mote P. W. , and Mantua N. , 2006: An approach to designing a national climate service. Proc. Natl. Acad. Sci. USA, 103, 19 61619 623, doi:10.1073/pnas.0609090103.

    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2013: Hell and high water: Practice-relevant adaptation science. Science, 342, 696698, doi:10.1126/science.1239569.

    • Search Google Scholar
    • Export Citation
  • Pennesi, K., 2007: Improving forecast communication: Linguistic and cultural considerations. Bull. Amer. Meteor. Soc., 88, 1033, doi:10.1175/BAMS-88-7-1033.

    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1995: Forecasters guide to tropical meteorology. AWS TR 240 Updated, Tech. Rep., Air Weather Service Scott AFB, 493 pp.

  • Ray, A. J., Garfin G. M. , Wilder M. , Vásquez-León M. , Lenart M. , and Comrie A. C. , 2007: Applications of monsoon research: Opportunities to inform decision making and reduce regional vulnerability. J. Climate, 20, 16081627, doi:10.1175/JCLI4098.1.

    • Search Google Scholar
    • Export Citation
  • Rosenzweig, M. R., and Binswanger H. P. , 1993: Wealth, weather risk and the composition and profitability of agricultural investments. Econ. J., 103, 5678, doi:10.2307/2234337.

    • Search Google Scholar
    • Export Citation
  • Stiller-Reeve, M. A., Spengler T. , and Chu P.-S. , 2014: Testing a flexible method to reduce false monsoon onsets. PLoS One, 9, e104386, doi:10.1371/journal.pone.0104386.

    • Search Google Scholar
    • Export Citation
  • Stiller-Reeve, M. A., Syed A. , Spengler T. , Spinney J. A. , and Hossain R. , 2015: Complementing scientific monsoon definitions with social perception in Bangladesh. Bull. Amer. Meteor. Soc., 96, 4957, doi:10.1175/BAMS-D-13-00144.1.

    • Search Google Scholar
    • Export Citation
  • Vally, H., and Coauthors, 2014: Proportion of illness acquired by foodborne transmission for nine enteric pathogens in Australia: An expert elicitation. Foodborne Pathog. Dis., 11, 727733, doi:10.1089/fpd.2014.1746.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., 2008: From climate assessment to climate services. Nat. Geosci., 1, 23, doi:10.1038/ngeo.2007.55.

  • Wang, B., and LinHo, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386398, doi:10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., Ding Q. , and Joseph P. V. , 2009: Objective definition of the Indian summer monsoon onset. J. Climate, 22, 33033316, doi:10.1175/2008JCLI2675.1.

    • Search Google Scholar
    • Export Citation
  • Weber, E. U., 2006: Experience-based and description-based perceptions of long-term risk: Why global warming does not scare us (yet). Climatic Change, 77, 103120, doi:10.1007/s10584-006-9060-3.

    • Search Google Scholar
    • Export Citation
  • Yamane, Y., Hayashi T. , Dewan A. M. , and Akter F. , 2010: Severe local convective storms in Bangladesh: Part I. Climatology. Atmos. Res., 95, 400406, doi:10.1016/j.atmosres.2009.11.004.

    • Search Google Scholar
    • Export Citation
  • Yang, X., Yao T. , Yang W. , Xu B. , He Y. , and Qu D. , 2012: Isotopic signal of earlier summer monsoon onset in the Bay of Bengal. J. Climate, 25, 25092516, doi:10.1175/JCLI-D-11-00180.1.

    • Search Google Scholar
    • Export Citation
  • Yatagai, A., Kamiguchi K. , Arakawa O. , Hamada A. , Yasutomi N. , and Kitoh A. , 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 14011415, doi:10.1175/BAMS-D-11-00122.1.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., and Lu E. , 2004: Globally unified monsoon onset and retreat indexes. J. Climate, 17, 22412248, doi:10.1175/1520-0442(2004)017<2241:GUMOAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., 2010: Diagnosing Australia-Asian monsoon onset/retreat using large-scale wind and moisture indices. Climate Dyn., 35, 601618, doi:10.1007/s00382-009-0620-x.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., Chan J. C. L. , and Ding Y. , 2004: Characteristics, evolution and mechanisms of the summer monsoon onset over Southeast Asia. Int. J. Climatol., 24, 14611482, doi:10.1002/joc.1082.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2710 2200 39
PDF Downloads 175 44 5