Can Gridded Precipitation Data and Phenological Observations Reduce Basis Risk of Weather Index–Based Insurance?

Tobias Dalhaus Agricultural Economics and Policy Group, D-MTEC, ETH Zürich, Zurich, Switzerland

Search for other papers by Tobias Dalhaus in
Current site
Google Scholar
PubMed
Close
and
Robert Finger Agricultural Economics and Policy Group, D-MTEC, ETH Zürich, Zurich, Switzerland

Search for other papers by Robert Finger in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Adverse weather events occurring at sensitive stages of plant growth can cause substantial yield losses in crop production. Agricultural insurance schemes can help farmers to protect their income against downside risks. While traditional indemnity-based insurance schemes need governmental support to overcome market failure caused by asymmetric information problems, weather index–based insurance (WII) products represent a promising alternative. In WII the payout depends on a weather index serving as a proxy for yield losses. However, the nonperfect correlation of yield losses and the underlying index, the so-called basis risk, constitutes a key challenge for these products. This study aims to contribute to the reduction of basis risk and thus to the addition of risk-reducing properties of WII. More specifically, the study tests whether grid data for precipitation (vs weather station data) and phenological observations (vs fixed time windows for index determination) that are provided by public institutions can reduce spatial and temporal basis risk and thus improve the performance of WII. An empirical example of wheat production in Germany is used.

No differences were found between using gridded and weather station precipitation, whereas the use of phenological observations significantly increases expected utility. However, even if grid data do not yet reduce basis risk, they enable overcoming several disadvantages of using station data and are thus useful for WII applications. Based on the study’s findings and the availability of these data in other countries, a massive potential for improving WII can be concluded.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/WCAS-D-16-0020.s1.

Corresponding author address: Tobias Dalhaus, Agricultural Economics and Policy Group, D-MTEC, ETH Zürich Sonneggstrasse 33, 8092 Zurich, Switzerland. E-mail: tdalhaus@ethz.ch

Abstract

Adverse weather events occurring at sensitive stages of plant growth can cause substantial yield losses in crop production. Agricultural insurance schemes can help farmers to protect their income against downside risks. While traditional indemnity-based insurance schemes need governmental support to overcome market failure caused by asymmetric information problems, weather index–based insurance (WII) products represent a promising alternative. In WII the payout depends on a weather index serving as a proxy for yield losses. However, the nonperfect correlation of yield losses and the underlying index, the so-called basis risk, constitutes a key challenge for these products. This study aims to contribute to the reduction of basis risk and thus to the addition of risk-reducing properties of WII. More specifically, the study tests whether grid data for precipitation (vs weather station data) and phenological observations (vs fixed time windows for index determination) that are provided by public institutions can reduce spatial and temporal basis risk and thus improve the performance of WII. An empirical example of wheat production in Germany is used.

No differences were found between using gridded and weather station precipitation, whereas the use of phenological observations significantly increases expected utility. However, even if grid data do not yet reduce basis risk, they enable overcoming several disadvantages of using station data and are thus useful for WII applications. Based on the study’s findings and the availability of these data in other countries, a massive potential for improving WII can be concluded.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/WCAS-D-16-0020.s1.

Corresponding author address: Tobias Dalhaus, Agricultural Economics and Policy Group, D-MTEC, ETH Zürich Sonneggstrasse 33, 8092 Zurich, Switzerland. E-mail: tdalhaus@ethz.ch

Supplementary Materials

    • Supplemental Materials (XLSX 585.48 KB)
Save
  • Berg, A., Quirion P. , and Sultan B. , 2009: Weather-index drought insurance in Burkina-Faso: Assessment of its potential interest to farmers. Wea. Climate Soc., 1, 7184, doi:10.1175/2009WCAS1008.1.

    • Search Google Scholar
    • Export Citation
  • Berg, E., and Schmitz B. , 2008: Weather‐based instruments in the context of whole‐farm risk management. Agric. Finance Rev., 68, 119133, doi:10.1108/00214660880001222.

    • Search Google Scholar
    • Export Citation
  • Cabas, J., Weersink A. , and Olale E. , 2010: Crop yield response to economic, site and climatic variables. Climatic Change, 101, 599616, doi:10.1007/s10584-009-9754-4.

    • Search Google Scholar
    • Export Citation
  • Chavas, J.-P., 2004: Risk Analysis in Theory and Practice. Advanced Finance Series, Academic Press, 247 pp.

  • Clarke, D. J., 2016: A theory of rational demand for index insurance. Amer. Econ. J.: Microeconomics, 8, 283306, doi:10.1257/mic.20140103.

    • Search Google Scholar
    • Export Citation
  • Cole, S., Giné X. , Tobacman J. , Townsend R. , Topalova P. , and Vickery J. , 2013: Barriers to household risk management: Evidence from India. Amer. Econ. J.: Appl. Econ., 5, 104135, doi:10.1257/app.5.1.104.

    • Search Google Scholar
    • Export Citation
  • Conradt, S., Finger R. , and Bokusheva R. , 2015a: Tailored to the extremes: Quantile regression for index-based insurance contract design. Agric. Econ., 46, 537547, doi:10.1111/agec.12180.

    • Search Google Scholar
    • Export Citation
  • Conradt, S., Finger R. , and Spörri M. , 2015b: Flexible weather index-based insurance design. Climate Risk Manage., 10, 106117, doi:10.1016/j.crm.2015.06.003.

    • Search Google Scholar
    • Export Citation
  • de Leeuw, J., Vrieling A. , Shee A. , Atzberger C. , Hadgu K. , Biradar C. , Keah H. , and Turvey C. , 2014: The potential and uptake of remote sensing in insurance: A review. Remote Sens., 6, 10 88810 912, doi:10.3390/rs61110888.

    • Search Google Scholar
    • Export Citation
  • Deng, X., Barnett B. J. , Vedenov D. V. , and West J. W. , 2007: Hedging dairy production losses using weather-based index insurance. Agric. Econ., 36, 271280, doi:10.1111/j.1574-0862.2007.00204.x.

    • Search Google Scholar
    • Export Citation
  • Deutscher Wetterdienst, 1991: Anleitung für phänologischen Beobachter des Deutschen Wetterdienstes. 3rd ed. Vorschriften und Betriebsunterlagen, Vol. 17, DWD, 155 pp.

  • Díaz-Nieto, J., Cook S. E. , Läderach P. , Fisher M. J. , and Jones P. G. , 2010: Rainfall index insurance to help smallholder farmers manage drought risk. Climate Dev., 2, 233247, doi:10.3763/cdev.2010.0050.

    • Search Google Scholar
    • Export Citation
  • Di Falco, S., and Chavas J.-P. , 2006: Crop genetic diversity, farm productivity and the management of environmental risk in rainfed agriculture. Eur. Rev. Agric. Econ., 33, 289314, doi:10.1093/eurrag/jbl016.

    • Search Google Scholar
    • Export Citation
  • Di Falco, S., and Chavas J.-P. , 2009: On crop biodiversity, risk exposure, and food security in the highlands of Ethopia. Amer. J. Agric. Econ., 91, 599611, doi:10.1111/j.1467-8276.2009.01265.x.

    • Search Google Scholar
    • Export Citation
  • Elabed, G., Bellemare M. F. , Carter M. R. , and Guirkinger C. , 2013: Managing basis risk with multiscale index insurance. Agric. Econ., 44, 419431, doi:10.1111/agec.12025.

    • Search Google Scholar
    • Export Citation
  • FAO, 2016: FAOSTAT statistical database. Accessed 30 August 2016. [Available online at http://faostat.fao.org/.]

  • Farooq, M., Hussain M. , Wahid A. , and Siddique K. H. M. , 2012: Drought stress in plants: An overview. Plant Responses to Drought Stress: From Morphological to Molecular Features, R. Aroca, Ed., Springer, 1–33, doi:10.1007/978-3-642-32653-0_1.

  • Farrin, K., and Miranda M. J. , 2015: A heterogeneous agent model of credit-linked index insurance and farm technology adoption. J. Dev. Econ., 116, 199211, doi:10.1016/j.jdeveco.2015.05.001.

    • Search Google Scholar
    • Export Citation
  • Finger, R., 2010: Revisiting the evaluation of robust regression techniques for crop yield data detrending. Amer. J. Agric. Econ., 92, 205211, doi:10.1093/ajae/aap021.

    • Search Google Scholar
    • Export Citation
  • Finger, R., 2013: Expanding risk consideration in integrated models—The role of downside risk aversion in irrigation decisions. Environ. Modell. Software, 43, 169172, doi:10.1016/j.envsoft.2013.02.001.

    • Search Google Scholar
    • Export Citation
  • Fosser, G., 2013: Precipitation statistics from regional climate model at resolutions relevant for soil erosion. Ph.D. dissertation, Karlsruhe Institute of Technology, 177 pp., doi:10.5445/KSP/1000041271.

  • Gine, X., Townsend R. , and Vickery J. , 2008: Patterns of rainfall insurance participation in rural India. World Bank Econ. Rev., 22, 539566, doi:10.1093/wber/lhn015.

    • Search Google Scholar
    • Export Citation
  • Glauber, J. W., 2013: The growth of the Federal Crop Insurance Program, 1990–2011. Amer. J. Agric. Econ., 95, 482488, doi:10.1093/ajae/aas091.

    • Search Google Scholar
    • Export Citation
  • Hardaker, J. B., Huirne R. B. M. , Anderson J. R. , and Lien G. , 2004: Coping with Risk in Agriculture. 2nd ed. CABI Publishing, 332 pp.

  • Heimfarth, E. L., and Musshoff O. , 2011: Weather index‐based insurances for farmers in the North China Plain: An analysis of risk reduction potential and basis risk. Agr. Finance Rev., 71, 218239, doi:10.1108/00021461111152582.

    • Search Google Scholar
    • Export Citation
  • Heimfarth, E. L., Finger R. , and Musshoff O. , 2012: Hedging weather risk on aggregated and individual farm‐level: Pitfalls of aggregation biases on the evaluation of weather index‐based insurance. Agr. Finance Rev., 72, 471487, doi:10.1108/00021461211277295.

    • Search Google Scholar
    • Export Citation
  • Kapphan, I., Calanca P. , and Holzkaemper A. , 2012: Climate change, weather insurance design and hedging effectiveness. Geneva Pap. Risk Insur.: Issues Pract., 37, 286317, doi:10.1057/gpp.2012.8.

    • Search Google Scholar
    • Export Citation
  • Kaspar, F., Zimmermann K. , and Polte-Rudolf C. , 2014: An overview of the phenological observation network and the phenological database of Germany’s national meteorological service (Deutscher Wetterdienst). Adv. Sci. Res., 11, 9399, doi:10.5194/asr-11-93-2014.

    • Search Google Scholar
    • Export Citation
  • Koenker, R., 2015: quantreg: Quantile regression, version 5.11. R package. [Available online at http://CRAN.R-project.org/package=quantreg.]

  • Kumar, V. P., Rao V. U. M. , Bhavani O. , Dubey A. P. , Singh C. B. , and Venkateswarlu B. , 2016: Sensitive growth stages and temperature thresholds in wheat (Triticum aestivum L.) for index-based crop insurance in the Indo-Gangetic Plains of India. J. Agric. Sci., 154, 321333, doi:10.1017/S0021859615000209.

    • Search Google Scholar
    • Export Citation
  • Leblois, A., and Quirion P. , 2013: Agricultural insurances based on meteorological indices: Realizations, methods and research challenges. Meteor. Appl., 20, 19, doi:10.1002/met.303.

    • Search Google Scholar
    • Export Citation
  • Leblois, A., Quirion P. , Alhassane A. , and Traoré S. , 2014a: Weather index drought insurance: An ex ante evaluation for millet growers in Niger. Environ. Resour. Econ., 57, 527551, doi:10.1007/s10640-013-9641-3.

    • Search Google Scholar
    • Export Citation
  • Leblois, A., Quirion P. , and Sultan B. , 2014b: Price vs. weather shock hedging for cash crops: Ex ante evaluation for cotton producers in Cameroon. Ecol. Econ., 101, 6780, doi:10.1016/j.ecolecon.2014.02.021.

    • Search Google Scholar
    • Export Citation
  • Lower Saxony Ministry of Food, Agriculture, Consumer Protection and Regional Development, 2011: Die niedersächsische Landwirtschaft in Zahlen. Rep. 107, Niedersachsen, 82 pp.

  • Menzel, A., and Sparks T. , 2006: Temperature and plant development: Phenology and seasonality. Plant Growth and Climate Change, J. I. L. Morison and M. D. Morecroft, Eds., Wiley-Blackwell, 70–95.

  • MeteoSwiss, 2011: MeteoSwiss grid-data products: Documentation for users. Accessed 8 January 2016, 4 pp. [Available online at https://www1.ethz.ch/ifu/hydrologie/research/research_data/proddoc.pdf.]

  • MeteoSwiss, 2016: Phänologisches Beobachtungsnetz. Accessed 8 January 2016. [Available online at http://www.meteoschweiz.admin.ch/home/mess-und-prognosesysteme/bodenstationen/phaenologisches-beobachtungsnetz.html.]

  • Miranda, M. J., and Gonzalez-Vega C. , 2010: Systemic risk, index insurance, and optimal management of agricultural loan portfolios in developing countries. Amer. J. Agric. Econ., 93, 399406.

    • Search Google Scholar
    • Export Citation
  • Norton, M. T., Turvey C. , and Osgood D. , 2012: Quantifying spatial basis risk for weather index insurance. J. Risk Finance, 14, 2034, doi:10.1108/15265941311288086.

    • Search Google Scholar
    • Export Citation
  • Norton, M. T., Boucher S. , and Verteramo Chiu L. , 2015: Geostatistics, basis risk and weather index insurance. Proc. 2015 Agricultural and Applied Economics Association and Western Agricultural Economics Association Annual Meeting, San Francisco, CA, Agricultural and Applied Economics Association. [Available online at http://ageconsearch.umn.edu/bitstream/205755/2/Norton_AAEA_2015.pdf.]

  • Odening, M., and Shen Z. , 2014: Challenges of insuring weather risk in agriculture. Agric. Finance Rev., 74, 188199, doi:10.1108/AFR-11-2013-0039.

    • Search Google Scholar
    • Export Citation
  • Odening, M., Musshoff O. , and Xu W. , 2007: Analysis of rainfall derivatives using daily precipitation models: Opportunities and pitfalls. Agric. Finance Rev., 67, 135156, doi:10.1108/00214660780001202.

    • Search Google Scholar
    • Export Citation
  • Olesen, J. E., and Coauthors, 2012: Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Food Addit. Contam., 29A, 15271542, doi:10.1080/19440049.2012.712060.

    • Search Google Scholar
    • Export Citation
  • Patt, A., Peterson N. , Carter M. , Velez M. , Hess U. , and Suarez P. , 2009: Making index insurance attractive to farmers. Mitigation Adapt. Strategies Global Change, 14, 737753, doi:10.1007/s11027-009-9196-3.

    • Search Google Scholar
    • Export Citation
  • Paulson, N. D., Hart C. E. , and Hayes D. J. , 2010: A spatial Bayesian approach to weather derivatives. Agric. Finance Rev., 70, 7996, doi:10.1108/00021461011042657.

    • Search Google Scholar
    • Export Citation
  • Pelka, N., and Musshoff O. , 2013: Hedging effectiveness of weather derivatives in arable farming—Is there a need for mixed indices? Agric. Finance Rev., 73, 358372, doi:10.1108/AFR-10-2012-0055.

    • Search Google Scholar
    • Export Citation
  • Rauthe, M., Steiner H. , Riediger U. , Mazurkiewicz A. , and Gratzki A. , 2013: A Central European precipitation climatology—Part I: Generation and validation of a high-resolution gridded daily data set (HYRAS). Meteor. Z., 22, 235256, doi:10.1127/0941-2948/2013/0436.

    • Search Google Scholar
    • Export Citation
  • R Core Team, 2014: R: A language and environment for statistical computing. R Foundation for Statistical Computing. [Available online at http://www.R-project.org/.]

  • Ritter, M., Musshoff O. , and Odening M. , 2014: Minimizing geographical basis risk of weather derivatives using a multi-site rainfall model. Comput. Econ., 44, 6786, doi:10.1007/s10614-013-9410-y.

    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., Schlenker W. , and Eyer J. , 2013: Agronomic weather measures in econometric models of crop yield with implications for climate change. Amer. J. Agric. Econ., 95, 236243, doi:10.1093/ajae/aas047.

    • Search Google Scholar
    • Export Citation
  • Saiyed, I. M., Bullock P. R. , Sapirstein H. D. , Finlay G. J. , and Jarvis C. K. , 2009: Thermal time models for estimating wheat phenological development and weather-based relationships to wheat quality. Can. J. Plant Sci., 89, 429439, doi:10.4141/CJPS07114.

    • Search Google Scholar
    • Export Citation
  • Schillinger, W. F., Schofstoll S. E. , and Alldredge J. R. , 2008: Available water and wheat grain yield relations in a Mediterranean climate. Field Crops Res., 109, 4549, doi:10.1016/j.fcr.2008.06.008.

    • Search Google Scholar
    • Export Citation
  • Spicka, J., and Hnilica J. , 2013: A methodical approach to design and valuation of weather derivatives in agriculture. Adv. Meteor., 2013, 146036, doi:10.1155/2013/146036.

    • Search Google Scholar
    • Export Citation
  • Ssymank, A., 1994: Neue Anforderungen im europäischen Naturschutz: Das Schutzgebietssystem Natura 2000 und die FFH-Richtlinie der EU. Natur Land, 69, 395406.

    • Search Google Scholar
    • Export Citation
  • Turvey, C. G., 2001: Weather derivatives for specific event risks in agriculture. Rev. Agric. Econ., 23, 333351, doi:10.1111/1467-9353.00065.

    • Search Google Scholar
    • Export Citation
  • Turvey, C. G., and McLaurin M. K. , 2012: Applicability of the normalized difference vegetation index (NDVI) in index-based crop insurance design. Wea. Climate Soc., 4, 271284, doi:10.1175/WCAS-D-11-00059.1.

    • Search Google Scholar
    • Export Citation
  • USA National Phenology Network, 2016: Phenology data overview. [Available online at https://www.usanpn.org/data.]

  • Varga, B., Vida G. , Varga-László E. , Bencze S. , and Veisz O. , 2015: Effect of simulating drought in various phenophases on the water use efficiency of winter wheat. J. Agron. Crop Sci., 201, 19, doi:10.1111/jac.12087.

    • Search Google Scholar
    • Export Citation
  • Vrieling, A., de Leeuw J. , and Said M. Y. , 2013: Length of growing period over Africa: Variability and trends from 30 years of NDVI time series. Remote Sens., 5 (2), 9821000, doi:10.3390/rs5020982.

    • Search Google Scholar
    • Export Citation
  • Weber, R., Fecke W. , Moeller I. , and Musshoff O. , 2015: Meso-level weather index insurance. Agric. Finance Rev., 75, 3146, doi:10.1108/AFR-12-2014-0045.

    • Search Google Scholar
    • Export Citation
  • Woodard, J. D., and Garcia P. , 2008: Basis risk and weather hedging effectiveness. Agric. Finance Rev., 68, 99117, doi:10.1108/00214660880001221.

    • Search Google Scholar
    • Export Citation
  • World Bank, 2013: Weather data grids for agriculture risk management: The case of Honduras and Guatemala. Rep. 77780, 34 pp. [Available online at https://openknowledge.worldbank.org/handle/10986/16501.]

  • Zolina, O., Simmer C. , Kapala A. , Shabanov P. , Becker P. , Mächel H. , Gulev S. , and Groisman P. , 2014: Precipitation variability and extremes in central Europe: New view from STAMMEX results. Bull. Amer. Meteor. Soc., 95, 9951002, doi:10.1175/BAMS-D-12-00134.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2833 900 77
PDF Downloads 1488 276 11