• Allen, J. T., M. K. Tippet, A. H. Sobel, and C. Lepore, 2016: Understanding the drivers of variability in severe convection: Bringing together the scientific and insurance communities. Bull. Amer. Meteor. Soc., 97 (Suppl.), doi:10.1175/BAMS-D-16-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anbarci, N., E. Floehr, J. Lee, and J. J. Song, 2008: Economic bias of weather forecasting: A spatial modeling approach. Economic Series, Deakin University School of Accounting, Economics and Finance Working Papers SWP 2008/12, 42 pp.

  • Anbarci, N., J. Boyd III, E. Floehr, J. Lee, and J. J. Song, 2011: Population and income sensitivity of private and public weather forecasting. Reg. Sci. Urban Econ., 41, 124133, doi:10.1016/j.regsciurbeco.2010.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., M. L. Bentley, and J. A. Stallins, 2012: Urban-induced thunderstorm modification in the Southeast United States. Climatic Change, 113, 481498, doi:10.1007/s10584-011-0324-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., S. Strader, T. Rosencrants, and A. J. Krmenec, 2014: Spatiotemporal changes in tornado hazard exposure: The case of the expanding bull’s-eye effect in Chicago, Illinois. Wea. Climate Soc., 6, 175193, doi:10.1175/WCAS-D-13-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, L. R., E. C. Gruntfest, M. H. Hayden, D. M. Schultz, and C. Benight, 2007: False alarms and close calls: A conceptual model of warning accuracy. Wea. Forecasting, 22, 11401147, doi:10.1175/WAF1031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, K. M., 2008: The county bias of severe thunderstorm warnings and severe thunderstorm weather reports for the central Texas region. M.A. thesis, Dept. of Geology, Baylor University, 126 pp. [Available online at http://hdl.handle.net/2104/5161.]

  • Barrett, K. M., 2012: The spatial distribution of contiguous United States thunderstorm related short-fuse severe weather warnings. Ph.D. thesis, Texas State University, 248 pp. [Available online at https://digital.library.txstate.edu/handle/10877/4293.]

  • Bell, T. L., D. Rosenfeld, and K.-M. Kim, 2009: Weekly cycle of lightning: Evidence of storm invigoration by pollution. Geophys. Res. Lett., 36, L23805, doi:10.1029/2009GL040915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and M. P. Kay, 2003: Climatological estimates of local daily tornado probability for the United States. Wea. Forecasting, 18, 626640, doi:10.1175/1520-0434(2003)018<0626:CEOLDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brundson, C., A. S. Fotheringham, and M. E. Charlton, 1996: Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal., 28, 281298, doi:10.1111/j.1538-4632.1996.tb00936.x.

    • Search Google Scholar
    • Export Citation
  • Charlton, M. E., and A. S. Fotheringham, 2009: Geographically weighted regression. White Paper, National Centre for Geocomputation, National University of Ireland Maynooth, 14 pp.

  • Dark, S. J., and D. Bram, 2007: The modifiable areal unit problem (MAUP) in physical geography. Prog. Phys. Geogr., 31, 471479, doi:10.1177/0309133307083294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, S. M., and J. G. LaDue, 2004: Nonmeteorological factors in warning verification. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., P2.7. [Available online at https://ams.confex.com/ams/11aram22sls/techprogram/paper_81766.htm.]

  • Diem, J. E., 2008: Detecting summer rainfall enhancement within metropolitan Atlanta, Georgia USA. Int. J. Climatol., 28, 129133, doi:10.1002/joc.1560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dobur, J. C., 2005: A comparison of severe thunderstorm warning verification statistics and population density within the NWS Atlanta County Warning Area. Fourth Annual Severe Storms Symp., Starkville, MS, East Mississippi Chapter National Weather Association and Amer. Meteor. Soc., D2–6. [Available online at https://www.weather.gov/media/ffc/SEconf.pdf.]

  • Doswell, C. A., III, H. E. Brooks, and M. P. Kay, 2005: Climatological estimates of daily nontornadic severe thunderstorm probability for the United States. Wea. Forecasting, 20, 577595, doi:10.1175/WAF866.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dou, J., Y. Wang, R. Bornstein, and S. Miao, 2015: Observed spatial characteristics of Beijing urban climate impacts on summer thunderstorms. J. Appl. Meteor. Climatol., 54, 94105, doi:10.1175/JAMC-D-13-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., L. E. Michaels, K. N. Scheitlin, and I. J. Elsner, 2013: The decreasing population bias in tornado reports across the central plains. Wea. Climate Soc., 5, 221232, doi:10.1175/WCAS-D-12-00040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fine, G. A., 2007: Authors of the Storm: Meteorologists and the Culture of Prediction. University of Chicago Press, 280 pp.

  • Fotheringham, A. S., C. Brundson, and M. Charlton, 2002: Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Wiley, 284 pp.

    • Search Google Scholar
    • Export Citation
  • Frisbie, P., 2006: The population bias of severe weather reports west of the continental divide. Natl. Wea. Dig., 30, 1116.

  • Fry, J., and Coauthors, 2011: Completion of the 2006 National Land Cover Database for the Coterminous United States. Photogramm. Eng. Remote Sens., 77, 858864.

    • Search Google Scholar
    • Export Citation
  • Gero, A. F., and A. J. Pitman, 2006: The impact of land cover change on a simulated storm event in the Sydney basin. J. Appl. Meteor. Climatol., 45, 283300, doi:10.1175/JAM2337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guillot, E. M., T. M. Smith, V. Lakshmanan, K. L. Elmore, D. W. Burgess, and G. J. Stumpf, 2008: Tornado and severe thunderstorm warning forecast skill and its relationship to storm type. 24th Conf. on Interactive Information Processing Systems for Meteorology, Oceanography, and Hydrology, New Orleans, LA, Amer. Meteor. Soc., 4A.3. [Available online at https://ams.confex.com/ams/88Annual/techprogram/paper_132605.htm.]

  • Guo, L., Z. Ma, and L. Zhang, 2008: Comparison of bandwidth selection in application of geographically weighted regression: A case study. Can. J. For. Res., 38, 25262534, doi:10.1139/X08-091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guyer, J. L., and M. L. Moritz, 2003: On issues of tornado damage assessment and F-scale assignment in agricultural areas. Symp. on the F-Scale and Severe-Weather Damage Assessment, Long Beach, CA, Amer. Meteor. Soc., 4.1. [Available online at https://ams.confex.com/ams/annual2003/techprogram/paper_57495.htm.]

  • Haberlie, A. M., W. S. Ashley, and T. J. Pingel, 2015: The effect of urbanization of the climatology of thunderstorm initiation. Quart. J. Roy. Meteor. Soc., 141, 663675, doi:10.1002/qj.2499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hales, J. E. J., 1993: Biases in the severe thunderstorm data base: Ramifications and solutions. Preprints, 13th Conf. on Weather Analysis and Forecasting, Vienna, VA, Amer. Meteor. Soc., 504507.

  • Harrison, D. R., and C. D. Karstens, 2017: A climatology of operational storm-based warnings: A geospatial analysis. Wea. Forecasting, 32, 476, doi:10.1175/WAF-D-15-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoium, D. K., A. J. Riordan, J. Monaham, and K. K. Keeter, 1997: Severe thunderstorm and tornado warnings at Raleigh, North Carolina. Bull. Amer. Meteor. Soc., 78, 25592575, doi:10.1175/1520-0477(1997)078<2559:STATWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IEM, 2016: Archived NWS watch/warnings. Iowa Environmental Mesonet, accessed 15 July 2016. [Available online at http://mesonet.agron.iastate.edu/request/gis/watchwarn.phtml.]

  • Lindell, M. K., and H. Brooks, 2013: Workshop on Weather Ready Nation: Science Imperatives for Severe Thunderstorm Research. Bull. Amer. Meteor. Soc., 94 (Suppl.), doi:10.1175/BAMS-D-12-00238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morss, R. E., and F. M. Ralph, 2007: Use of information by National Weather Service forecasters and emergency managers during CALJET and PACJET-2001. Wea. Forecasting, 22, 539555, doi:10.1175/WAF1001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakaya, T., 2015: Geographically weighted generalised linear modeling. C. Brunsdon and A. Singleton, Eds., Geocomputation: A Practical Primer, Sage Publications Ltd., 201–220.

    • Crossref
    • Export Citation
  • Nakaya, T., A. S. Fotheringham, M. Charlton, and C. Brunsdon, 2009: Semiparametric geographically weighted generalised linear modelling in GWR4.0. Proc. 10th Int. Conf. on GeoComputation, Sydney, NSW, Australia, GeoComputation International Steering Group, 5 pp. [Available online at http://www.geocomputation.org/2009/PDF/Nakaya_et_al.pdf.]

  • Niyogi, D., P. Pyle, M. Lei, S. Pal Arya, C. M. Kishtawal, M. Shepherd, F. Chen, and B. Wolfe, 2011: Urban modification of thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. J. Appl. Meteor. Climatol., 50, 11291144, doi:10.1175/2010JAMC1836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2016: U.S. climate regions. [Available online at https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php.]

  • Ntelekos, A. A., J. A. Smith, M. L. Baeck, W. F. Krajewski, A. J. Miller, and R. Goska, 2008: Extreme hydrometeorological events and the urban environment: Dissecting the 7 July 2004 thunderstorm over the Baltimore, MD Metropolitan Region. Water Resour. Res., 44, W08446, doi:10.1029/2007WR006346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paulikas, M. J., 2013: Examining population bias relative to severe thunderstorm hazard reporting trends in the Atlanta, GA metropolitan region. Meteor. Appl., 21, 494503, doi:10.1002/met.1394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pennell, A., 2009: The influence of tornadic experiences on severe weather preparedness: A comparative study of Abilene, Texas and Huntsville, Alabama. Natl. Wea. Dig., 33 (1), 103118.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and S. A. Rutledge, 2001: Regional variability in tropical convection: Observations from TRMM. J. Climate, 14, 35663586, doi:10.1175/1520-0442(2001)014<3566:RVITCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, P. S., P. Bieringer, X. Niu, and B. Whissel, 2003: An improved estimate of tornado occurrence in the central plains of the United States. Mon. Wea. Rev., 131, 10261031, doi:10.1175/1520-0493(2003)131<1026:AIEOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosencrants, T. D., and W. S. Ashley, 2015: Spatiotemporal analysis of tornado exposure in five US metropolitan areas. Nat. Hazards, 78, 121140, doi:10.1007/s11069-015-1704-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kumala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, doi:10.1126/science.1160606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., W. R. Cotton, and J. O. Adegoke, 2003: Simulation of St. Louis, Missouri, land use impacts on thunderstorms. J. Appl. Meteor., 42, 716738, doi:10.1175/1520-0450(2003)042<0716:SOSLML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saide, P. E., and Coauthors, 2015: Central American biomass burning smoke can increase tornado severity in the U.S. Geophys. Res. Lett., 42, 956965, doi:10.1002/2014GL062826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sander, J. F., E. Faust, and M. Steuer, 2013: Rising variability in thunderstorm-related U.S. losses as a reflection of changes in large-scale thunderstorm forcing. Wea. Climate Soc., 5, 317331, doi:10.1175/WCAS-D-12-00023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidlin, T. W., B. O. Hammer, Y. Ono, and P. S. King, 2009: Tornado shelter-seeking behavior and tornado shelter options among mobile home residents in the United States. Nat. Hazards, 48, 191201, doi:10.1007/s11069-008-9257-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stallins, J. A., M. L. Bentley, and L. S. Rose, 2006: Cloud-to-ground flash patterns for Atlanta, Georgia (USA) from 1992 to 2003. Climate Res., 30, 99112, doi:10.3354/cr030099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stallins, J. A., J. Carpenter, M. L. Bentley, W. S. Ashley, and J. A. Mulholland, 2013: Weekend–weekday aerosols and geographic variability in cloud-to-ground lightning for the urban region of Atlanta, Georgia, USA. Reg. Environ. Change, 13, 137151, doi:10.1007/s10113-012-0327-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutter, D., and S. Erikson, 2010: The time cost of tornado warnings and the savings with storm-based warnings. Wea. Climate Soc., 2, 103112, doi:10.1175/2009WCAS1011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • U.S. Census Bureau, 2013: American Community Survey. Subset used: 2007–2011, accessed 15 July 2016. [Available online at http://factfinder2.census.gov/faces/nav/jsf/pages/searchresults.xhtml?refresh=t.]

  • Wheeler, D., and M. Tiefelsdorf, 2005: Multicollinearity and correlation among local regression coefficients in geographically weighted regression. J. Geogr. Syst., 7, 161187, doi:10.1007/s10109-005-0155-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X., Z. Li, L. Liu, L. Zhou, M. Cribb, and F. Zhang, 2016: Distinct weekly cycles of thunderstorms and a potential connection with aerosol type in China. Geophys. Res. Lett., 43, 87608768, doi:10.1002/2016GL070375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Y.-X. Shou, R. R. Dickerson, and F. Chen, 2011: Impact of upstream urbanization on the urban heat island effects along the Washington–Baltimore corridor. J. Appl. Meteor. Climatol., 50, 20122029, doi:10.1175/JAMC-D-10-05008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 9
PDF Downloads 7 7 7

Nonmeteorological Influences on Severe Thunderstorm Warning Issuance: A Geographically Weighted Regression-Based Analysis of County Warning Area Boundaries, Land Cover, and Demographic Variables

View More View Less
  • 1 University of Kentucky, Lexington, Kentucky
Restricted access

Abstract

Studies have shown that the spatial distribution of severe thunderstorm warnings demonstrates variation beyond what can be attributed to weather and climate alone. Investigating spatial patterns of these variations can provide insight into nonmeteorological factors that might lead forecasters to issue warnings. Geographically weighted regression was performed on a set of demographic and land cover descriptors to ascertain their relationships with National Weather Service (NWS) severe thunderstorm warning polygons issued by 36 NWS forecast offices in the central and southeastern United States from 2008 to 2015. County warning area (CWA) boundaries and cities were predominant sources of variability in warning counts. Global explained variance in verified and unverified severe thunderstorm warnings ranged from 67% to 81% for population, median income, and percent imperviousness across the study area, which supports the spatial influence of these variables on warning issuance. Local regression coefficients indicated that verified and unverified warning counts increased disproportionately in larger cities relative to the global trend, particularly for NWS weather forecast office locations. However, local explained variance tended to be lower in cities, possibly due to greater complexity of social and economic factors shaping warning issuance. Impacts of thunderstorm type and anthropogenic modification of existing storms should also be considered when interpreting the results of this study.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Megan L. White, megan.white1@uky.edu

Abstract

Studies have shown that the spatial distribution of severe thunderstorm warnings demonstrates variation beyond what can be attributed to weather and climate alone. Investigating spatial patterns of these variations can provide insight into nonmeteorological factors that might lead forecasters to issue warnings. Geographically weighted regression was performed on a set of demographic and land cover descriptors to ascertain their relationships with National Weather Service (NWS) severe thunderstorm warning polygons issued by 36 NWS forecast offices in the central and southeastern United States from 2008 to 2015. County warning area (CWA) boundaries and cities were predominant sources of variability in warning counts. Global explained variance in verified and unverified severe thunderstorm warnings ranged from 67% to 81% for population, median income, and percent imperviousness across the study area, which supports the spatial influence of these variables on warning issuance. Local regression coefficients indicated that verified and unverified warning counts increased disproportionately in larger cities relative to the global trend, particularly for NWS weather forecast office locations. However, local explained variance tended to be lower in cities, possibly due to greater complexity of social and economic factors shaping warning issuance. Impacts of thunderstorm type and anthropogenic modification of existing storms should also be considered when interpreting the results of this study.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Megan L. White, megan.white1@uky.edu
Save