• Abraham, S., R. Bartlett, M. Standage, A. Black, A. Charlton-Perez, and R. McCloy, 2015: Do location-specific forecasts pose a new challenge for communicating uncertainty? Meteor. Appl., 22, 554562, doi:10.1002/met.1487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aerts, J. C. J. H., K. C. Clarke, and A. D. Keuper, 2003: Testing popular visualization techniques for representing model uncertainty. Cartogr. Geogr. Inf. Sci., 30, 249261, doi:10.1559/152304003100011180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ash, K. D., R. L. Schumann III, and G. C. Bowser, 2014: Tornado warning trade-offs: Evaluating choices for visually communicating risk. Wea. Climate Soc., 6, 104118, doi:10.1175/WCAS-D-13-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broad, K., A. Leiserowitz, J. Weinkle, and M. Steketee, 2007: Misinterpretations of the “cone of uncertainty” in Florida during the 2004 hurricane season. Bull. Amer. Meteor. Soc., 88, 651667, doi:10.1175/BAMS-88-5-651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarkson, R. J., E. J. E. Majewicz, and P. Mack, 2016: A re-evaluation of the 2010 quantitative understanding of the effects volcanic ash has on gas turbine engines. J. Aerosp. Eng., 230, 22742291, doi:10.1177/0954410015623372.

    • Search Google Scholar
    • Export Citation
  • Correll, M., and M. Gleicher, 2014: Error bars considered harmful: Exploring alternate encodings for mean and error. IEEE Trans. Visualization Comput. Graphics, 20, 21422151, doi:10.1109/TVCG.2014.2346298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, J., D. House, and M. Lindell, 2013: Visualizing uncertainty in predicted hurricane tracks. Int. J. Uncertainty Quantif., 3, 143156, doi:10.1615/Int.J.UncertaintyQuantification.2012003966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, E. E. H., J. McClure, D. M. Johnston, and D. Paton, 2014: Communicating likelihoods and probabilities in forecasts of volcanic eruptions. J. Volcanol. Geotherm. Res., 272, 115, doi:10.1016/j.jvolgeores.2013.12.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ekker, K., G. Gifford, S. A. Leik, and R. K. Leik, 1988: Using microcomputer game-simulation experiments to study family response to the Mt. St. Helens eruptions. Soc. Sci. Comput. Rev., 6, 90105, doi:10.1177/089443938800600109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Englich, B., T. Mussweiler, and F. Strack, 2006: Playing dice with criminal sentences: The influence of irrelevant anchors on experts’ judicial decision making. Pers. Soc. Psychol. Bull., 32, 188200, doi:10.1177/0146167205282152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • European Commission, 2016: Air passenger transport by reporting country. Eurostat. Subset used: 2015, European Union (28 countries), accessed 15 March 2017. [Available online at http://ec.europa.eu/eurostat/web/products-datasets/-/avia_paoc.]

  • Francis, P. N., M. C. Cooke, and R. W. Saunders, 2012: Retrieval of physical properties of volcanic ash using Meteosat: A case study from the 2010 Eyjafjallajökull eruption. J. Geophys. Res., 117, D00U09, doi:10.1029/2011JD016788.

    • Search Google Scholar
    • Export Citation
  • Harvey, N., N. Huntley, H. Dacre, M. Goldstein, D. Thomson, and H. Webster, 2016: Multi-level emulation of a volcanic ash transport and dispersion model to quantify sensitivity to uncertain parameters. Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-288.

    • Search Google Scholar
    • Export Citation
  • Ibrekk, H., and M. G. Morgan, 1987: Graphical communication of uncertain quantities to nontechnical people. Risk Anal., 7, 519529, doi:10.1111/j.1539-6924.1987.tb00488.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jonas, E., S. Schultz-Hardt, D. Frey, and N. Thelen, 2001: Confirmation bias in sequential information search after preliminary decisions: An expansion of dissonance theoretical research on selective exposure to information. J. Pers. Soc. Psychol., 80, 557571, doi:10.1037/0022-3514.80.4.557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joslyn, S. L., and J. E. LeClerc, 2012: Uncertainty forecasts improve weather-related decisions and attenuate the effects of forecast error. J. Exp. Psychol. Appl., 18, 126140, doi:10.1037/a0025185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joslyn, S. L., K. Pak, D. Jones, J. Pyles, and E. Hunt, 2007: The effect of probabilistic information on threshold forecasts. Wea. Forecasting, 22, 804812, doi:10.1175/WAF1020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joslyn, S. L., S. Savelli, and L. Nadav-Greenberg, 2011: Reducing probabilistic weather forecasts to the worst-case scenario: Anchoring effects. J. Exp. Psychol. Appl., 17, 342353, doi:10.1037/a0025901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, C., M. Siegrist, and H. Gutscher, 2006: The role of the affect and availability heuristics in risk communication. Risk Anal., 26, 631639, doi:10.1111/j.1539-6924.2006.00773.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirschenbaum, S. S., and J. E. Arruda, 1994: Effect of graphic and verbal probability information on command decision making. Hum. Factors, 36, 406418, doi:10.1177/001872089403600302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindell, M. K., S. Huang, H. Wei, and C. D. Samuelson, 2016: Perceptions and expected immediate reactions to tornado warning polygons. Nat. Hazards, 80, 683707, doi:10.1007/s11069-015-1990-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazzocchi, M., F. Hansstein, and M. Ragona, 2010: The volcanic ash cloud and its financial impact on the European airline industry. CESifo Forum, 2, 92100.

    • Search Google Scholar
    • Export Citation
  • McCloy, R., C. P. Beaman, B. Morgan, and R. Speed, 2007: Training conditional and cumulative risk judgments: The role of frequencies, problem-structure, and Einstellung. Appl. Cognit. Psychol., 21, 325344, doi:10.1002/acp.1273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Millington, S. C., R. W. Saunders, P. N. Francis, and H. N. Webster, 2012: Simulated volcanic ash imagery: A method to compare NAME ash concentration forecasts with SEVIRI imagery for the Eyjafjallajökull eruption in 2010. J. Geophys. Res., 117, D00U17, doi:10.1029/2011JD016770.

    • Search Google Scholar
    • Export Citation
  • Morss, R. E., J. K. Lazo, and J. L. Demuth, 2010: Examining the use of weather forecasts in decision scenarios: Results from a US survey with implications for uncertainty communication. Meteor. Appl., 17, 149162, doi:10.1002/met.196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morss, R. E., J. L. Demuth, A. Bostrom, J. K. Lazo, and H. Lazrus, 2015: Flash flood risks and warning decisions: A mental models study of forecasters, public officials, and media broadcasters in Boulder, Colorado. Risk Anal., 35, 20092028, doi:10.1111/risa.12403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morss, R. E., K. J. Mulder, J. K. Lazo, and J. L. Demuth, 2016: How do people perceive, understand, and anticipate responding to flash flood risks and warnings? Results from a public survey in Boulder, Colorado, USA. J. Hydrol., 541, 649664, doi:10.1016/j.jhydrol.2015.11.047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nadav-Greenberg, L., and S. L. Joslyn, 2009: Uncertainty forecasts improve decision making among nonexperts. J. Cognit. Eng. Decis. Making, 3, 209227, doi:10.1518/155534309X474460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nadav-Greenberg, L., S. L. Joslyn, and M. U. Taing, 2008a: The effect of uncertainty visualizations on decision making in weather forecasting. J. Cognit. Eng. Decis. Making, 2, 2447, doi:10.1518/155534308X284354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nadav-Greenberg, L., S. L. Joslyn, and M. U. Taing, 2008b: The effect of uncertainty visualizations on decision making in weather forecasting. J. Cognit. Eng. Decis. Making, 2, 2447, doi:10.1518/155534308X284354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagele, D. E., and J. E. Trainor, 2012: Geographic specificity, tornadoes, and protective action. Wea. Climate Soc., 4, 145155, doi:10.1175/WCAS-D-11-00047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nobert, S., D. Demeritt, and H. Cloke, 2010: Informing operational flood management with ensemble predictions: Lessons from Sweden. J. Flood Risk Manage., 3, 7279, doi:10.1111/j.1753-318X.2009.01056.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, E., D. Västfjäll, P. Slovic, C. K. Mertz, K. Mazzocco, and S. Dickert, 2006: Numeracy and decision making. Psychol. Sci., 17, 407413, doi:10.1111/j.1467-9280.2006.01720.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riveiro, M., T. Helldin, G. Falkman, and M. Libram, 2014: Effects of visualizing uncertainty on decision-making in a target identification scenario. Comput. Graphics, 41, 8498, doi:10.1016/j.cag.2014.02.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roulston, M. S., and T. R. Kaplan, 2009: A laboratory-based study of understanding of uncertainty in 5-day site-specific temperature forecasts. Meteor. Appl., 16, 237244, doi:10.1002/met.113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruginski, I. T., and Coauthors, 2015: Non-expert interpretations of hurricane forecast uncertainty visualizations. Spat. Cognit. Comput., 16, 154172, doi:10.1080/13875868.2015.1137577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Safety and Airspace Regulation Group, 2014: Guidance regarding flight operation in the vicinity of volcanic ash. Civil Aviation Authority, accessed 16 March 2017. [Available online at https://www.caa.co.uk/Safety-initiatives-and-resources/Safety-projects/Volcanic-ash/A-history-of-ash-and-aviation/.]

  • Sherman-Morris, K., and M. E. Brown, 2012: Experiences of Smithville, Mississippi residence with the 27 April 2011 tornado. Natl. Wea. Dig., 36, 93101.

    • Search Google Scholar
    • Export Citation
  • St. John, M., J. Callan, S. Proctor, and S. T. Holste, 2000: Tactical decision-making under uncertainty: Experiments I and II. Space and Naval Warfare Systems Center Tech. Rep. 1821, 32 pp.

    • Crossref
    • Export Citation
  • Tak, S., A. Toet, and J. van Erp, 2015: Public understanding of visual representations of uncertainty in temperature forecasts. J. Cognit. Eng. Decis. Making, 9, 241262, doi:10.1177/1555343415591275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, H. A., C. E. Renshaw, and M. D. Jensen, 1997: Effects of computer-based role-playing on decision making skills. J. Educ. Comput. Res., 17, 147164, doi:10.2190/Y1CX-XU4G-KDFK-JBFJ.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, M. A., J. M. Lindsay, and J. C. Gaillard, 2015: The influence of probabilistic volcanic hazard map properties on hazard communication. J. Appl. Volcanol., 4, 124, doi:10.1186/s13617-015-0023-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thordarson, T., and G. Larsen, 2007: Volcanism in Iceland in historical time: Volcano types, eruption styles and eruptive history. J. Geodyn., 43, 118152, doi:10.1016/j.jog.2006.09.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, H. N., and Coauthors, 2012: Operational prediction of ash concentrations in the distal volcanic ash cloud from the 2010 Eyjafjallajökull eruption. J. Geophys. Res., 117, D00U08, doi:10.1029/2011JD016790.

    • Search Google Scholar
    • Export Citation
  • Whyte, G., and J. K. Sebenius, 1997: The effect of multiple anchors on anchoring in individual and group judgment. Organ. Behav. Hum. Decis. Processes, 69, 7585, doi:10.1006/obhd.1996.2674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wickens, C. D., K. Gempler, and M. E. Morphew, 2000: Workload and reliability of predictor displays in aircraft traffic avoidance. Transp. Hum. Factors, 2, 99126, doi:10.1207/STHF0202_01.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, H., M. K. Lindell, C. S. Prater, and C. D. Samuelson, 2014: Effects of track and threat information on judgments of hurricane strike probability. Risk Anal., 34, 10251039, doi:10.1111/risa.12128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, H., M. K. Lindell, and C. S. Prater, 2015: Process tracing analysis of hurricane information displays. Risk Anal., 35, 22022220, doi:10.1111/risa.12423.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3 3 3
PDF Downloads 0 0 0

Visualizing Volcanic Ash Forecasts: Scientist and Stakeholder Decisions Using Different Graphical Representations and Conflicting Forecasts

View More View Less
  • 1 Department of Meteorology, University of Reading, Reading, United Kingdom
  • | 2 Department of Typography and Graphic Communication, University of Reading, Reading, United Kingdom
  • | 3 Department of Psychology, University of Reading, Reading, United Kingdom
Restricted access

Abstract

During volcanic eruptions, Volcanic Ash Advisory Centres issue ash advisories for aviation showing the forecasted outermost extent of the ash cloud. During the 2010 Icelandic volcano Eyjafjallajökull eruption, the Met Office produced supplementary forecasts of quantitative ash concentration, due to demand from airlines. Additionally, satellite retrievals of estimated volcanic ash concentration are now available. To test how these additional graphical representations of volcanic ash affect flight decisions, whether users infer uncertainty in graphical forecasts of volcanic ash, and how decisions are made when given conflicting forecasts, a survey was conducted of 25 delegates representing U.K. research and airline operations dealing with volcanic ash. Respondents were more risk seeking with safer flight paths and risk averse with riskier flight paths when given location and concentration forecasts compared to when given only the outermost extent of the ash. Respondents representing operations were more risk seeking than respondents representing research. Additionally, most respondents’ hand-drawn no-fly zones were larger than the areas of unsafe ash concentrations in the forecasts. This conservatism implies that respondents inferred uncertainty from the volcanic ash concentration forecasts. When given conflicting forecasts, respondents became more conservative than when given a single forecast. The respondents were also more risk seeking with high-risk flight paths and more risk averse with low-risk flight paths when given conflicting forecasts than when given a single forecast. The results show that concentration forecasts seem to reduce flight cancellations while maintaining safety. Open discussions with the respondents suggested that definitions of uncertainty may differ between research and operations.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Kelsey J. Mulder, k.mulder@reading.ac.uk

Abstract

During volcanic eruptions, Volcanic Ash Advisory Centres issue ash advisories for aviation showing the forecasted outermost extent of the ash cloud. During the 2010 Icelandic volcano Eyjafjallajökull eruption, the Met Office produced supplementary forecasts of quantitative ash concentration, due to demand from airlines. Additionally, satellite retrievals of estimated volcanic ash concentration are now available. To test how these additional graphical representations of volcanic ash affect flight decisions, whether users infer uncertainty in graphical forecasts of volcanic ash, and how decisions are made when given conflicting forecasts, a survey was conducted of 25 delegates representing U.K. research and airline operations dealing with volcanic ash. Respondents were more risk seeking with safer flight paths and risk averse with riskier flight paths when given location and concentration forecasts compared to when given only the outermost extent of the ash. Respondents representing operations were more risk seeking than respondents representing research. Additionally, most respondents’ hand-drawn no-fly zones were larger than the areas of unsafe ash concentrations in the forecasts. This conservatism implies that respondents inferred uncertainty from the volcanic ash concentration forecasts. When given conflicting forecasts, respondents became more conservative than when given a single forecast. The respondents were also more risk seeking with high-risk flight paths and more risk averse with low-risk flight paths when given conflicting forecasts than when given a single forecast. The results show that concentration forecasts seem to reduce flight cancellations while maintaining safety. Open discussions with the respondents suggested that definitions of uncertainty may differ between research and operations.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Kelsey J. Mulder, k.mulder@reading.ac.uk
Save