• Al-Kaisi, M. M., and Coauthors, 2013: Drought impact on crop production and the soil environment: 2012 experiences from Iowa. J. Soil Water Conserv., 68, 19A24A, doi:10.2489/jswc.68.1.19A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allwine, K. J., M. J. Leach, L. W. Stockham, J. S. Shinn, R. P. Hosker, J. F. Bowers, and J. C. Pace, 2004: Overview of Joint Urban 2003—An atmospheric dispersion study in Oklahoma City. Preprints, Symp. on Planning, Nowcasting, and Forecasting in the Urban Zone, Seattle, WA, Amer. Meteor. Soc., J7.1. [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_74349.htm.]

  • Anderson, M. C., J. R. Mecikalski, R. D. Torn, J. M. Norman, W. L. Kustas, and J. B. Basara, 2004: Disaggregation of regional flux estimates using Landsat thermal and visible band imagery. J. Hydrometeor., 5, 343363, doi:10.1175/1525-7541(2004)005<0343:AMRSMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andra, D. L., 2016: The role of the Oklahoma Mesonet in decision support services for a weather-ready nation. Preprints, 22nd Conf. on Applied Climatology, Amer. Meteor. Soc., New Orleans, LA, Amer. Meteor. Soc., 3.6. [Available online at https://ams.confex.com/ams/96Annual/webprogram/Paper285750.html.]

  • Arguez, A., and R. S. Vose, 2011: The definition of the standard WMO climate normal: The key to deriving alternative climate normal. Bull. Amer. Meteor. Soc., 92, 699704, doi:10.1175/2010BAMS2955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakker, K., 2012: Water security: Research challenges and opportunities. Science, 337, 914915, doi:10.1126/science.1226337.

  • Banerjee, O., R. Bark, J. Connor, and D. Neville, 2013: Crossman. An ecosystem services approach to estimating economic losses associated with drought. Ecol. Econ., 91, 1927, doi:10.1016/j.ecolecon.2013.03.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basara, J. B., and K. C. Crawford, 2002: Linear relationships between root-zone soil moisture and atmospheric processes in the planetary boundary layer. J. Geophys. Res., 107, doi:10.1029/2001JD000633.

    • Search Google Scholar
    • Export Citation
  • Basara, J. B., and Coauthors, 2011: The Oklahoma City micronet. Meteor. Appl., 18, 252261, doi:10.1002/met.189.

  • Brock, F. V., and P. K. Govind, 1977: Portable automated Mesonet in operation. J. Appl. Meteor., 16, 299310, doi:10.1175/1520-0450(1977)016<0299:PAMIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brock, F. V., G. H. Saum, and S. R. Semmer, 1986: Portable automated Mesonet II. J. Atmos. Oceanic Technol., 3, 573583, doi:10.1175/1520-0426(1986)003<0573:PAMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brock, F. V., K. C. Crawford, R. L. Elliott, G. W. Cuperus, S. J. Stadler, H. L. Johnson, and M. D. Eilts, 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12, 519, doi:10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brotzge, J. A., 2004: A two-year comparison of the surface energy and water budgets between two OASIS sites 900 km apart. J. Hydrometeor., 5, 311326, doi:10.1175/1525-7541(2004)005<0311:ATCOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brotzge, J. A., and K. C. Crawford, 2000: Estimating sensible heat flux from the Oklahoma Mesonet. J. Appl. Meteor., 39, 102116, doi:10.1175/1520-0450(2000)039<0102:ESHFFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brotzge, J. A., and S. J. Richardson, 2003: Spatial and temporal correlation among Oklahoma Mesonet and OASIS surface-layer measurements. J. Appl. Meteor., 42, 519, doi:10.1175/1520-0450(2003)042<0005:SATCAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butry, D., and G. Donovan, 2008: Protect thy neighbor: Investigating the spatial externalities of community wildfire hazard mitigation. For. Sci., 54, 417428. [Available online at https://www.treesearch.fs.fed.us/pubs/33131.]

    • Search Google Scholar
    • Export Citation
  • Carlson, J. D., and R. E. Burgan, 2003: Review of user needs in operational fire danger estimation: The Oklahoma example. Int. J. Remote Sens., 24, 16011620, doi:10.1080/01431160210144651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, J. D., and D. S. Arndt, 2008: The Oklahoma Dispersion Model: Using the Gaussian plume model as an operational management tool for determining near-surface dispersion conditions across Oklahoma. J. Appl. Meteor. Climatol., 47, 462474, doi:10.1175/2007JAMC1418.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, J. D., and T. G. Bidwell, 2008: OK-FIRE: A new weather-based decision support system for wildland fire managers. OSU Cooperative Extension Service, Leaflet L-326.

  • Carlson, J. D., R. E. Burgan, D. M. Engle, and J. R. Greenfield, 2002: The Oklahoma Fire Danger Model: An operational tool for mesoscale fire danger rating in Oklahoma. Int. J. Wildland Fire, 11, 183191, doi:10.1071/WF02003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, J. D., L. S. Bradshaw, R. M. Nelson Jr., R. R. Bensch, and R. Jabrzemski, 2007: Application of the Nelson model to four timelag fuel classes using Oklahoma field observations: Model evaluation and comparison with National Fire Danger Rating System algorithms. Int. J. Wildland Fire, 16, 204216, doi:10.1071/WF06073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceccato, P., K. Fernandes, D. Ruiz, and E. Allis, 2014: Climate and environmental monitoring for decision making. Earth Perspect., 1, 16, doi:10.1186/2194-6434-1-16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Combs, S., 2012: The impact of the 2011 drought and beyond. Texas Comptroller of Public Accounts Publication 96-1704, 16 pp. [Available online at https://texashistory.unt.edu/ark:/67531/metapth542095/m2/1/high_res_d/txcs-0790.pdf.]

  • Cosh, M. H., T. J. Jackson, P. J. Starks, G. C. Heathman, and R. Bindlish, 2003: Satellite soil moisture validation using in-situ point sources in the Southern Great Plains during SMEX03. Eos, Trans. Amer. Geophys. Union, 84, 618.

    • Search Google Scholar
    • Export Citation
  • Crawford, K. C., S. Pritchett, T. Ross, and G. Essenberg, 2005: COOP Modernization: Building NOAA’s environmental real-time observation network. Preprints, 13th Symp. on Meteorological Observations and Instrumentation, Savannah, GA, Amer. Meteor. Soc., KS1.2. [Available online at https://ams.confex.com/ams/15AppClimate/techprogram/paper_94167.htm.]

  • Czajkowski, K. P., S. N. Goward, S. J. Stadler, and A. Walz, 2000: Thermal remote sensing of near surface environmental variables: Application over the Oklahoma Mesonet. Prof. Geogr., 52, 345357, doi:10.1111/0033-0124.00230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., M. Hayes, and M. Widhalm, 2011: Measuring economic impacts of drought: A review and discussion. Disaster Prev. Manage., 20, 434446, doi:10.1108/09653561111161752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engel, K. H., 2013: Perverse incentives: The case of wildfire smoke regulation. Ecol. Law Quart., 623, 623672, doi:10.2139/ssrn.2131366.

    • Search Google Scholar
    • Export Citation
  • Fiebrich, C. A., 2009: History of surface weather observations in the United States. Earth Sci. Rev., 93, 7784, doi:10.1016/j.earscirev.2009.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiebrich, C. A., and K. C. Crawford, 2009: Automation: A step toward improving the quality of daily temperature data produced by climate observing networks. J. Atmos. Oceanic Technol., 26, 12461260, doi:10.1175/2009JTECHA1241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiebrich, C. A., D. L. Grimsley, R. A. McPherson, and K. A. Kesler, 2006a: The value of routine site visits in managing and maintaining quality data from the Oklahoma Mesonet. J. Atmos. Oceanic Technol., 23, 406416, doi:10.1175/JTECH1852.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiebrich, C. A., D. L. Grimsley, R. A. McPherson, K. A. Kesler, and G. R. Essenberg, 2006b: The value of routine site visits in managing and maintaining quality data from the Oklahoma Mesonet. J. Atmos. Oceanic Technol., 23, 406416, doi:10.1175/JTECH1852.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection At Night field project. Bull. Amer. Meteor. Soc., 98, 767786, doi:10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghirardelli, J. D., and B. Glahn, 2010: The meteorological development laboratory’s aviation weather prediction system. Wea. Forecasting, 25, 10271051, doi:10.1175/2010WAF2222312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golden, J., and C. R. Adams, 2000: The tornado problem: Forecast, warning, and response. Nat. Hazards Rev., 1, 107118, doi:10.1061/(ASCE)1527-6988(2000)1:2(107).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, Y., E. Hunt, B. Wardlow, J. B. Basara, J. F. Brown, and J. P. Verdin, 2008: Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data. Geophys. Res. Lett., 35, L22401, doi:10.1029/2008GL035772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hane, C. E., H. B. Bluestein, T. M. Crawford, M. E. Baldwin, and R. M. Rabin, 1997: Severe thunderstorm development in relation to along-dryline variability: A case study. Mon. Wea. Rev., 125, 231251, doi:10.1175/1520-0493(1997)125<0231:STDIRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haugland, M. J., and K. C. Crawford, 2005: The diurnal cycle of land–atmosphere interactions across Oklahoma’s winter wheat belt. Mon. Wea. Rev., 133, 120130, doi:10.1175/MWR-2842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, T. W., M. Shafer, T. Simonsen, J. Traurig, N. Mirsky, S. J. Stadler, and P. G. Earls, 2002: Using environmental data to attract development: The Oklahoma Wind Power Assessment Initiative. Preprints, Third Symp. on Environmental Applications, Orlando, FL, Amer. Meteor. Soc., 5.5. [Available online at https://ams.confex.com/ams/annual2002/techprogram/paper_28627.htm.]

  • Hurteau, M., and M. North, 2009: Fuel treatment effects on tree-based forest carbon storage and emissions under modeled wildfire scenarios. Front. Ecol. Environ., 7, 409414, doi:10.1890/080049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illston, B. G., and J. B. Basara, 2003: Analysis of short-term droughts in Oklahoma. Eos, Trans. Amer. Geophys. Union, 84, 157161, doi:10.1029/2003EO170001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illston, B. G., J. B. Basara, and K. C. Crawford, 2004: Seasonal to interannual variations of soil moisture measured in Oklahoma. Int. J. Climatol., 24, 18831896, doi:10.1002/joc.1077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Jackson, T. J., D. M. Le Vine, A. Y. Hsu, A. Oldak, P. J. Starks, C. T. Swift, J. D. Isham, and M. Haken, 1999: Soil moisture mapping at regional scales using microwave radiometry: The Southern Great Plains Hydrology Experiment. IEEE Trans. Geosci. Remote Sens., 37, 21362151, doi:10.1109/36.789610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johansson, R., E. Luebehusen, B. Morris, H. Shannon, and S. Meyer, 2015: Monitoring the impacts of weather and climate extremes on global agricultural production. Wea. Climate Extremes, 10, 6571, doi:10.1016/j.wace.2015.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joint Fire Science Program, 2011: OK-FIRE: Weather-based decision support for wildland fire management. Fire Science Brief, No. 127, Joint Fire Science Program, 1–6. [Available online at https://www.firescience.gov/projects/briefs/05-2-1-81_FSBrief127.pdf.]

  • Kim, T., P. Kenkel, and B. W. Brorsen, 2012: Forecasting hourly peak call volume for a rural electric cooperative call center. J. Forecasting, 31, 314329, doi:10.1002/for.1226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirby, M., R. Bark, J. Connor, M. E. Qureshi, and S. Keyworth, 2014: Sustainable irrigation: How did irrigated agriculture in Australia’s Murray–Darling Basin adapt in the Millennium Drought? Agric. Water Manage., 145, 154162, doi:10.1016/j.agwat.2014.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitzmiller, D., D. Miller, R. Fulton, and F. Ding, 2013: Radar and multisensory precipitation estimation techniques in National Weather Service hydrologic operations. J. Hydrol. Eng., 18, 133142, doi:10.1061/(ASCE)HE.1943-5584.0000523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krueger, E. S., T. E. Ochsner, J. D. Carlson, D. M. Engle, D. Twidwell, and S. D. Fuhlendorf, 2016: Concurrent and antecedent soil moisture relate positively or negatively to probability of large wildfires depending on season. Int. J. Wildland Fire, 25, 657668, doi:10.1071/WF15104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., R. A. Pielke, and S. A. Changnon, 1999: Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: A review. Bull. Amer. Meteor. Soc., 80, 10771098, doi:10.1175/1520-0477(1999)080<1077:TFIWAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landon-Lane, J., H. Rockoff, and R. H. Steckel, 2009: Droughts, floods and financial distress in the United States. NBER Working Paper 15596, 49 pp.

    • Crossref
    • Export Citation
  • Lee, B. H., P. Kenkel, and B. Wade Brorsen, 2013: Pre-harvest forecasting of county wheat yield and wheat quality using weather information. Agric. For. Meteor., 168, 2635, doi:10.1016/j.agrformet.2012.08.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leister, A., P. L. Paarlberg, and J. G. Lee, 2015: Dynamic effects of drought on U.S. crop and livestock sectors. J. Agric. Appl. Econ., 47, 261284, doi:10.1017/aae.2015.8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, B., P. Stackhouse, W. Sun, Y. Hu, Z. Liu, and T. F. Fan, 2013: Is Oklahoma getting drier? J. Quant. Spectrosc. Radiat. Transfer, 122, 208213, doi:10.1016/j.jqsrt.2012.07.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S., L. E. Quenemoen, J. Malilay, E. Noji, T. Sinks, and J. Mendlein, 1996: Assessment of a severe-weather warning system and disaster preparedness, Calhoun County, Alabama, 1994. Amer. J. Public Health, 86, 8789, doi:10.2105/AJPH.86.1.87.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., S. J. Rees, and J. D. Spitle, 2007: Modeling snow melting on heated pavement surfaces. Part II: Experimental validation. Appl. Therm. Eng., 27, 11251131, doi:10.1016/j.applthermaleng.2006.07.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Low, P. S., and Coauthors, Eds., 2013: White paper I: Economic and social impacts of desertification, land degradation and drought. UNCCD Second Scientific Conference 2013 Rep., 62 pp. [Available online at http://2sc.unccd.int/fileadmin/unccd/upload/documents/WhitePapers/White_Paper_1.pdf.]

  • Lu, Y. Y., R. J. Doviak, and C. Crisp, 1996: Estimating large-scale vorticity using VAD products and reflectivity. J. Atmos. Oceanic Technol., 13, 11291138, doi:10.1175/1520-0426(1996)013<1129:ELSVUV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mader, T. L., L. J. Johnson, and J. B. Gaughan, 2010: A comprehensive index for assessing environmental stress in animals. 2010. J. Anim. Sci., 88, 21532165, doi:10.2527/jas.2009-2586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahmood, R., and S. A. Foster, 2008: Mesoscale weather and climate observations in Kentucky for societal benefit. Focus Geogr., 50, 3236, doi:10.1111/j.1949-8535.2008.tb00210.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahmood, R., and Coauthors, 2017: Mesonets: Mesoscale weather and climate observations for the United States. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-15-00258.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, C. H., K. Crawford, K. Mitchell, and D. Stensrud, 2003: The impact of the land surface physics in the operational NCEP Eta model on simulating the diurnal cycle: Evaluation and testing using Oklahoma Mesonet data. Wea. Forecasting, 18, 748768, doi:10.1175/1520-0434(2003)018<0748:TIOTLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martens, B. V., B. G. Illston, and C. A. Fiebrich, 2017: The Oklahoma Mesonet: A case study of the diverse state of environmental sensor data citations. Data Sci. J., in press.

    • Search Google Scholar
    • Export Citation
  • McManus, G. D., and Coauthors, 2008: Development and testing of an ice accumulation algorithm. Preprints, 17th Conf. on Applied Climatology, Whistler, BC, Canada, Amer. Meteor. Soc., 9.5. [Available online at https://ams.confex.com/ams/13MontMet17AP/webprogram/Paper141246.html.]

  • McPherson, R. A., and K. C. Crawford, 1996: The EARTHSTORM project: Encouraging the use of real-time data from the Oklahoma Mesonet in K-12 classrooms. Bull. Amer. Meteor. Soc., 77, 749761, doi:10.1175/1520-0477(1996)077<0749:EA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., and D. J. Stensrud, 2005: Influences of a winter wheat belt on the evolution of the boundary layer. Mon. Wea. Rev., 133, 21782199, doi:10.1175/MWR2968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., and Coauthors, 2007: Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet. J. Atmos. Oceanic Technol., 24, 301321, doi:10.1175/JTECH1976.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meo, M., B. Ziebro, and A. Patton, 2004: Tulsa turnaround: From disaster to sustainability. Nat. Hazards Rev., 5, 19, doi:10.1061/(ASCE)1527-6988(2004)5:1(1).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., J. Betancourt, M. Falkenmark, R. M. Hirsch, Z. W. Kundzewicz, D. P. Lettenmaier, and R. J. Stouffer, 2008: Stationarity is dead: Whither water management? Science, 319, 573574, doi:10.1126/science.1151915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, D. A., K. C. Crawford, K. A. Kloesel, and J. M. Wolfinbarger, 2001: OK-FIRST: A meteorological information system for public safety. Bull. Amer. Meteor. Soc., 82, 19111923, doi:10.1175/1520-0477(2001)082<1911:OFAMIS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, D. A., K. C. Crawford, K. A. Kloesel, and G. Kitch, 2002: OK-FIRST: An example of successful collaboration between the meteorological and emergency response communities on 3 May 1999. Wea. Forecasting, 17, 567576, doi:10.1175/1520-0434(2002)017<0567:OFAEOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, C. K., J. W. Wilson, and N. A. Crook, 1993: The utility of sounding and Mesonet data to nowcast thunderstorm initiation. Wea. Forecasting, 8, 132146, doi:10.1175/1520-0434(1993)008<0132:TUOSAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nemunaitis, K. L., J. B. Basara, B. A. Cosgrove, D. Lohmann, K. E. Mitchell, and P. R. Houser, 2004: Validation of the North American Land Data Assimilation System (NLDAS) using data from Oklahoma Mesonet OASIS sites. Preprints, 18th Conf. on Hydrology, Seattle, WA, Amer. Meteor. Soc., 2.2. [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_72207.htm.]

  • Nielsen, 2013: Local television market universe estimates. Accessed 11 October 2016. [Available online at http://www.nielsen.com/content/dam/corporate/us/en/docs/solutions/measurement/television/2013-2014-DMA-Ranks.pdf.]

  • NOAA, 2014: What is the Coop program? Accessed 19 September 2016. [Available online at http://www.nws.noaa.gov/om/coop/what-is-coop.html.]

  • NRC, 1998: Future of the National Weather Service Cooperative Observer Network. National Academy Press, 65 pp.

  • NRC, 2004: Where the Weather Meets the Road: A Research Agenda for Improving Road Weather Services. National Academies Press, 174 pp. [Available online at http://www.nap.edu/openbook.php?record_id=10893.]

  • NRC, 2009: Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks. National Academy Press, 234 pp.

  • ODAFF, 2015: Oklahoma Agriculture Statistics 2015: Pocket facts. ODAFF, USDA-NASS, OSU Rep., 31 pp. [Available online at https://www.nass.usda.gov/Statistics_by_State/Oklahoma/Publications/Annual_Statistical_Bulletin/ok_pocket_facts_2015.pdf.]

  • ODEM/OWRB, 1997: Oklahoma drought contingency plan. Accessed 30 September 2016. [Available online at http://bradley-ok.us/Water/drought.html.]

  • Oklahoma Mesonet, 2016: Rainfall summaries by climate division. Accessed 30 September 2016. [Available online at http://climate.ok.gov/index.php/drought/last_30_days/drought_wildfire.]

  • Pereira Fo, F., K. C. Crawford, and C. L. Hartzell, 1998: Improving WSR-88D hourly rainfall estimates. Wea. Forecasting, 13, 10161028, doi:10.1175/1520-0434(1998)013<1016:IWHRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piercefield, E., T. Wendling, P. Archer, and S. Mallonee, 2011: Winter storm-related injuries in Oklahoma, January 2007. J. Saf. Res., 42, 2732, doi:10.1016/j.jsr.2010.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piepmeier, J. R., and Coauthors, 2017: SMAP L-band microwave radiometer: Instrument design and first year on orbit. IEEE Trans. Geosci. Remote Sens., 55, 19541966, doi:10.1109/TGRS.2016.2631978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prezant, D. J., and Coauthors, 2005: Effects of the August 2003 blackout on the New York City healthcare delivery system: A lesson for disaster preparedness. Crit. Care Med., 33, S96S101, doi:10.1097/01.CCM.0000150956.90030.23.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, K. G., G. Ramakrishna, and N. N. Reddy, 2011: Impact of meso-net observations on short-term prediction of intense weather systems during PRWONAM: Part I—On wind variations. J. Atmos. Sol. Terr. Phys., 73, 965985, doi:10.1016/j.jastp.2010.08.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, A. M., S. D. Fuhlendorf, and J. R. Weir, 2010: Weather variables affecting Oklahoma wildfires. Rangeland Ecol. Manag., 63, 599603, doi:10.2111/REM-D-09-00132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, S. J., M. E. Splitt, and B. M. Lesht, 2000: Enhancement of ARM surface meteorological observations during the fall 1996 water vapor intensive observation period. J. Atmos. Oceanic Technol., 17, 312322, doi:10.1175/1520-0426(2000)017<0312:EOASMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riebsame, W. E., M. Price, H. F. Diaz, and T. Moses, 1986: The social burden of weather and climate hazards. Bull. Amer. Meteor. Soc., 67, 13781388, doi:10.1175/1520-0477(1986)067<1378:TSBOWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., and Coauthors, 2003: Evaluation of the North American Land Data Assimilation System over the southern Great Plains during the warm season. J. Geophys. Res., 108, 114, doi:10.1029/2002JD003245.

    • Search Google Scholar
    • Export Citation
  • Russell, K. R., D. H. Van Lear, and D. C. Guynn Jr., 1999: Prescribed fire effects on herpetofauna: Review and management implications. Wildl. Soc. Bull., 27, 374384. [Available online at http://www.jstor.org/stable/3783904.]

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1986a: The dryline. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 549–572.

    • Crossref
    • Export Citation
  • Schaefer, J. T., 1986b: Severe thunderstorm forecasting: A historical perspective. Wea. Forecasting, 1, 164189, doi:10.1175/1520-0434(1986)001<0164:STFAHP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroeder, J. L., W. S. Burgett, K. B. Haynie, I. Sonmez, D. Skwira, A. L. Doggett, and J. W. Lipe, 2005: The West Texas Mesonet: A technical overview. J. Atmos. Oceanic Technol., 22, 211222, doi:10.1175/JTECH-1690.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwantes, A. M., J. J. Swenson, and R. B. Jackson, 2016: Quantifying drought-induced tree mortality in the open canopy woodlands of central Texas. Remote Sens. Environ., 181, 5464, doi:10.1016/j.rse.2016.03.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shadman, F., S. Sadeghipour, M. Moghavvemi, and R. Saidur, 2016: Drought and energy security in key ASEAN countries. Renewable Sustainable Energy Rev., 53, 5058, doi:10.1016/j.rser.2015.08.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shafer, M. A., C. A. Fiebrich, D. Arndt, S. E. Fredrickson, and T. W. Hughes, 2000: Quality assurance procedures in the Oklahoma Mesonetwork. J. Atmos. Oceanic Technol., 17, 474494, doi:10.1175/1520-0426(2000)017<0474:QAPITO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, N., P. Sharma, D. Irwin, and P. Shenoy, 2011: Predicting solar generation from weather forecasts using machine learning. IEEE SmartGridComm: Second IEEE Int. Conf. on Smart Grid Communications, Brussels, Belgium, IEEE, 528–533.

    • Crossref
    • Export Citation
  • Shellberg, D. J., 1994: Spatial and temporal variation of the earth/atmosphere system across Oklahoma from October 1993 through January 1994. M.S. thesis, School of Meteorology, University of Oklahoma, 77 pp.

  • Sridhar, V., and R. L. Elliott, 2002: On the development of a simple downwelling longwave radiation scheme. Agric. For. Meteor., 112, 237243, doi:10.1016/S0168-1923(02)00129-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sridhar, V., R. L. Elliott, F. Chen, and J. A. Brotzge, 2002: Validation of the NOAH-OSU land surface model using surface flux measurements in Oklahoma. J. Geophys. Res., 107, 4418, doi:10.1029/2001JD001306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, D., R. Pinker, and J. B. Basara, 2004: Land surface temperature estimation from the next generation Geostationary Operational Environmental Satellite GOES M–Q. J. Appl. Meteor., 43, 363372, doi:10.1175/1520-0450(2004)043<0363:LSTEFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swenson, S., J. Famiglietti, J. Basara, and J. Wahr, 2008: Estimating profile soil moisture and groundwater variations using GRACE and Oklahoma Mesonet soil moisture data. Water Resour. Res., 44, W01413, doi:10.1029/2007WR006057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, D. S. K., O. V. Wilhelmi, and M. J. Hayes, 2006: Disaster reduction, drought, and the mountain resort community. Mountain Resort Planning and Development in an Era of Globalization, T. Clark, T., A. Gill, and R. Hartmann, Eds., Cognizant Communication Corporation, 221–233.

  • Thomas, D. S. K., O. V. Wilhelmi, T. N. Finnessey, and V. Deheza, 2013: A comprehensive framework for tourism and recreation drought vulnerability reduction. Environ. Res. Lett., 8, 044004, doi:10.1088/1748-9326/8/4/044004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, M. C., S. J. Connor, S. E. Zebiak, and M. Jancloes, 2011: Africa needs climate data to fight disease. Nature, 471, 440443, doi:10.1038/471440a.

  • Tribble, A., 2003: The relationship between weather variables and electricity demand to improve short-term load forecasting. Ph.D. dissertation, University of Oklahoma, 221 pp.

  • USDA NASS, 2016: USDA’s national agricultural statistics service: Oklahoma Field Office. Accessed 15 December 2016. [Available online at https://www.nass.usda.gov/ok.]

  • U.S. DOC, 1960: The cooperative weather observer. Key to Meteorological Records Doc. 1.11, U.S. Government Printing Office, 116 pp.

  • U.S. DOT, 2015: How do weather events impact roads? Road Weather Management Program, accessed 1 October 2016. [Available online at http://www.ops.fhwa.dot.gov/weather/q1_roadimpact.htm.]

  • U.S. Drought Monitor, 2016: U.S. Drought Monitor background. Accessed 1 October 2016. [Available online at http://droughtmonitor.unl.edu/AboutUSDM/Background.aspx.]

  • Van Dijk, A. I. J. M., H. E. Beck, R. S. Crosbie, R. A. M. De Jeu, Y. Y. Liu, G. M. Podger, B. Timbal, and N. R. Viney, 2013: The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res., 49, 10401057, doi:10.1002/wrcr.20123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253277, doi:10.1175/BAMS-85-2-253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhite, D. A., M. D. Svoboda, and M. J. Hayes, 2007: Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness. Water Resour. Manage., 21, 763774, doi:10.1007/s11269-006-9076-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Q., T. Dokic, and M. Kezunovic, 2016: Predicting impact of weather caused blackouts on electricity customers based on risk assessment. Proc. Power and Energy Society General Meeting (PESGM), Boston, MA, IEEE, 1–5, doi:10.1109/PESGM.2016.7741871.

    • Crossref
    • Export Citation
  • Yang, H. X., L. Lu, and J. Burnett, 2003: Weather data and probability analysis of hybrid photovoltaic–wind power generation systems in Hong Kong. Renewable Energy, 28, 18131824, doi:10.1016/S0960-1481(03)00015-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoder, J., D. Engle, and S. Fuhlendorf, 2004: Liability, incentives, and prescribed fire for ecosystem management. Front. Ecol. Environ, 2, 361366, doi:10.1890/1540-9295(2004)002[0361:LIAPFF]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, C. B., A. A. Bradley, W. F. Krajewski, A. Kruger, and M. L. Morrissey, 2000: Evaluating NEXRAD multisensory precipitation estimates for operational hydrologic forecasting. J. Hydrometeor., 1, 241254, doi:10.1175/1525-7541(2000)001<0241:ENMPEF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., S. Reed, and D. Kitzmiller, 2011: Effects of retrospective gauge-based readjustment of multisensory precipitation estimates on hydrologic simulations. J. Hydrometeor., 12, 429443, doi:10.1175/2010JHM1200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziolkowska, J. R., 2016: Socio-economic implications of drought in the agricultural sector and the state economy. Economies, 4, 19, doi:10.3390/economies4030019.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 11 11 11
PDF Downloads 3 3 3

Benefits and Beneficiaries of the Oklahoma Mesonet: A Multisectoral Ripple Effect Analysis

View More View Less
  • 1 Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma
  • | 2 Oklahoma Mesonet, Oklahoma Climatological Survey, University of Oklahoma, Norman, Oklahoma
  • | 3 Oklahoma Mesonet, Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, Oklahoma
Restricted access

Abstract

Since the Oklahoma Mesonet (the state’s automated mesoscale weather station network) was established in 1994, it has served a number of diverse groups and provided public services to foster weather preparedness, education, and public safety, while also supporting decision-making in agricultural production and wildland fire management.

With 121 monitoring stations across the state, the Oklahoma Mesonet has developed an array of technologies to observe a variety of atmospheric and soil variables in 5- to 30-min intervals. These consistent observations have been especially critical for predicting and preparing for extreme weather events like droughts, floods, ice storms, and severe convective storms as well as for development of value-added tools. The tools, outreach programs, and mesoscale data have been widely utilized by the general public, state decision-makers, public safety officials, K–12 community, agricultural sector, and researchers, thus generating wide societal and economic benefits to many groups.

Based on practical application examples of weather information provided by the Oklahoma Mesonet, this paper analyzes both benefits generated by Oklahoma Mesonet information to the public and decision-makers and ripple effects (spreading amplified outcomes/implications) of those benefits in the short and long term. The paper further details ongoing and anticipated Oklahoma Mesonet innovations as a response to changing needs for weather-related information over time, especially as a result of technological developments and weather variability.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jadwiga R. Ziolkowska, jziolkowska@ou.edu

Abstract

Since the Oklahoma Mesonet (the state’s automated mesoscale weather station network) was established in 1994, it has served a number of diverse groups and provided public services to foster weather preparedness, education, and public safety, while also supporting decision-making in agricultural production and wildland fire management.

With 121 monitoring stations across the state, the Oklahoma Mesonet has developed an array of technologies to observe a variety of atmospheric and soil variables in 5- to 30-min intervals. These consistent observations have been especially critical for predicting and preparing for extreme weather events like droughts, floods, ice storms, and severe convective storms as well as for development of value-added tools. The tools, outreach programs, and mesoscale data have been widely utilized by the general public, state decision-makers, public safety officials, K–12 community, agricultural sector, and researchers, thus generating wide societal and economic benefits to many groups.

Based on practical application examples of weather information provided by the Oklahoma Mesonet, this paper analyzes both benefits generated by Oklahoma Mesonet information to the public and decision-makers and ripple effects (spreading amplified outcomes/implications) of those benefits in the short and long term. The paper further details ongoing and anticipated Oklahoma Mesonet innovations as a response to changing needs for weather-related information over time, especially as a result of technological developments and weather variability.

Denotes content that is immediately available upon publication as open access.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jadwiga R. Ziolkowska, jziolkowska@ou.edu
Save