• Blackadar, A. K., 1976: Modeling the nocturnal boundary layer. Preprints, Third Symp. on Atmospheric Turbulence and Air Quality, Raleigh, NC, Amer. Meteor. Soc., 46–49.

  • ——, 1979: High resolution models of the planetary boundary layer. Advances in Environmental Science and Engineering, Vol. 1, J. Pfafflin and E. Ziegler, Eds., Gordon and Breach, 50–85.

  • Bleck, R., and S. G. Benjamin, 1993: Regional weather prediction with a model combining terrain-following and isentropic coordinates. Part I: Model description. Mon. Wea. Rev.,121, 1770–1785.

  • Busch, N. E., W. Klug, R. P. Pearce, and P. White, 1994: Comments on statistical results. Mesoscale Modeling of the Atmosphere, Meteor. Monogr., No. 47, Amer. Meteor., Soc., 115–156.

    • Crossref
    • Export Citation
  • Cairns, M. M., R. J. Miller, J. Chen, A. Marroquin, and J. L. Mahoney, 1994: A second evaluation of aviation-impact variables generated by the Eta Model. NOAA Tech. Memo. ERL FSL-14, NOAA Forecast Systems Laboratory, Boulder, CO, 94 pp.

  • Carlson, T. N., and F. E. Boland, 1978: Analysis of urban–rural canopy using a surface heat flux/temperature model. J. Appl. Meteor.,17, 998–1013.

    • Crossref
    • Export Citation
  • Chouinard, C., J. Mailhot, H. L. Mitchell, A. Staniforth, and R. Hogue, 1994: The Canadian regional data assimilation system: Operational and research applications. Mon. Wea. Rev.,122, 1306–1325.

    • Crossref
    • Export Citation
  • Dickinson, R. E., P. J. Kennedy, and M. F. Wilson, 1986: Biosphere–Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN-275+STR, 69 pp. [Available from UCAR Communications, P.O. Box 3000, Boulder, CO 80307-3000.].

  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci.,46, 3077–3107.

    • Crossref
    • Export Citation
  • ——, 1996: A multi-layer soil temperature model for MM5. Preprints, Sixth PSU/NCAR Mesoscale Model Users’ Workshop, Boulder, CO, NCAR/MMM, 49–50. [Available from NCAR, P.O. Box 3000, Boulder, CO 80307–3000.].

  • Elliot, W. P., and D. J. Gaffen, 1991: On the utility of radiosonde humidity archives for climate studies. Bull. Amer. Meteor. Soc.,72, 1507–1520.

    • Crossref
    • Export Citation
  • Fletcher, N. H., 1962: Physics of Rain Clouds. Cambridge University Press, 386 pp.

  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev.,121, 5–31.

    • Crossref
    • Export Citation
  • ——, J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth- generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 125 pp.

  • Haagenson, P. L., D. O. Gill, and Y.-H. Kuo, 1992: Real-time forecasts for WISP-91 using the Penn State/NCAR mesoscale model. NCAR Tech. Note NCAR/TN-380+STR, 42 pp. [Available from UCAR Communications, P.O. Box 3000, Boulder, CO 80307- 3000.].

  • ——, J. Dudhia, G. A. Grell, and D. R. Stauffer, 1994: The Penn State/NCAR Mesoscale Model (MM5) source code documentation. NCAR Tech. Note NCAR/TN-392+STR, 121 pp. [Available from UCAR Communications, P.O. Box 3000, Boulder, CO 80307-3000.].

  • Hack, J. J., B. A. Boville, B. P. Briegleb, J. T. Kiehl, P. J. Rasch, and D. L. Williamson, 1993: Description of the NCAR Community Climate Model (CCM2). NCAR Tech. Note NCAR/TN- 382+STR, 120 pp. [Available from UCAR Communications, P.O. Box 3000, Boulder, CO 80307-3000.].

  • Heymsfield, A. J., 1977: Precipitation development in stratiform ice clouds: A microphysical and dynamical study. J. Atmos. Sci.,34, 367–381.

    • Crossref
    • Export Citation
  • ——, and L. J. Donner, 1990: A scheme for parameterizing ice-cloud water content in general circulation models. J. Atmos. Sci.,47, 1865–1877.

    • Crossref
    • Export Citation
  • Manning, K. W., and P. L. Haagenson, 1992: Data ingest and objective analysis for the PSU/NCAR modeling system: Programs DATAGRID and RAWINS. NCAR Tech. Note NCAR/TN-376+IA, 209 pp. [Available from UCAR Communications, P.O. Box 3000, Boulder, CO 80307-3000.].

  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor.,31, 708–721.

    • Crossref
    • Export Citation
  • Oncley, S. P., and J. Dudhia, 1995: Evaluation of surface fluxes from MM5 using observations. Mon. Wea. Rev.,123, 3344–3357.

    • Crossref
    • Export Citation
  • Rasmussen, R. M., and W. A. Cooper, 1993: Winter Icing and Storms Project 1994 (WISP94) scientific overview. 46 pp. [Available from National Center for Atmospheric Research, Boulder, CO 80307.].

  • ——, and Coauthors, 1992: Winter Icing and Storms Project (WISP). Bull. Amer. Meteor. Soc.,73, 951–974.

    • Crossref
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1997: Explicit forecasting of supercooled liquid water in winter storms using a mesoscale model. Quart. J. Roy. Meteor. Soc., in press.

  • Rossow, W. B., Y. Desormeaux, C. L. Brest, and A. W. Walker, 1992:International Satellite Cloud Climatology Project (ISCCP) radiance calibration report. WMO/TD-No. 520, WCRP-77, World Meteorological Organization, 104 pp.

  • Seaman, N. L., D. R. Stauffer, and A. M. Lario-Gibbs, 1995: A multiscale four-dimensional data assimilation system applied in the San Joaquin Valley during SARMAP. Part I: Modeling design and basic performance characteristics. J. Appl. Meteor.,34, 1739–1761.

  • Wade, C. G., 1994: An evaluation of problems affecting the measurements of low relative humidity on the United States radiosonde. J. Atmos. Oceanic Technol.,11, 687–700.

    • Crossref
    • Export Citation
  • Wallace, J. M., and P. V. Hobbs, 1977: Atmospheric Science: An Introductory Survey. Academic Press. 467 pp.

  • Zhang, D., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparison with SESAME-79 data. J. Appl. Meteor.,21, 1594–1609.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 160 20 1
PDF Downloads 23 7 0

Verification and Sensitivity Experiments for the WISP94 MM5 Forecasts

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado *
Restricted access

Abstract

A statistical verification of real-time forecasts from the Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model version 5 (MM5) examines several model biases noted in numerical forecasts prepared for the Winter Icing and Storms Project’s 1994 field experiment. Verification of MM5 forecasts against satellite and radiosonde data reveals a strong cloudy bias in the mid- to upper troposphere, significant moist biases aloft and near the surface, and a deep cold bias through much of the troposphere.

The cloudy bias and upper-level moist bias are traced to an inappropriate assumption in the microphysical parameterization. Simple changes to the parameterization greatly improve the cloud forecast. A portion of the deep cold bias is attributed to the simple parameterization of atmospheric radiation used for the forecasts. The low-level cold and moist biases are in large part due to the climatological values of soil moisture availability as a function of land-use category. Experiments with a one-dimensional column model further quantify the sensitivity of low-level temperatures to the soil moisture availability values. While an immediate improvement in model results can be achieved by selection of more appropriate values of moisture availability, ultimately a detailed initialization and parameterization of soil moisture is needed.

Corresponding author address: Mr. Kevin W. Manning, NCAR/MMM, P.O. Box 3000, Boulder, CO 80307-3000.

Email: kmanning@ucar.edu

Abstract

A statistical verification of real-time forecasts from the Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model version 5 (MM5) examines several model biases noted in numerical forecasts prepared for the Winter Icing and Storms Project’s 1994 field experiment. Verification of MM5 forecasts against satellite and radiosonde data reveals a strong cloudy bias in the mid- to upper troposphere, significant moist biases aloft and near the surface, and a deep cold bias through much of the troposphere.

The cloudy bias and upper-level moist bias are traced to an inappropriate assumption in the microphysical parameterization. Simple changes to the parameterization greatly improve the cloud forecast. A portion of the deep cold bias is attributed to the simple parameterization of atmospheric radiation used for the forecasts. The low-level cold and moist biases are in large part due to the climatological values of soil moisture availability as a function of land-use category. Experiments with a one-dimensional column model further quantify the sensitivity of low-level temperatures to the soil moisture availability values. While an immediate improvement in model results can be achieved by selection of more appropriate values of moisture availability, ultimately a detailed initialization and parameterization of soil moisture is needed.

Corresponding author address: Mr. Kevin W. Manning, NCAR/MMM, P.O. Box 3000, Boulder, CO 80307-3000.

Email: kmanning@ucar.edu

Save