• Åkesson, O., 1996: Comparative verification of precipitation probabilities from the ECMWF ensemble prediction system and from the operational T213 forecast. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., J31–J34.

  • Anderson, J. L., 1996: A method for producing and evaluating probabilistic forecasts from ensemble model integrations. J. Climate,9, 1518–1530.

    • Crossref
    • Export Citation
  • Bishop, C. H., and Z. Toth, 1996: Using ensembles to identify observations likely to improve forecasts. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 72–74.

  • Bresch, J. F., and J.-W. Bao, 1996: Generation of mesoscale ensemble members by varying model physics. Preprints, 11th Conf. on Numerical Weather Prediction Norfolk, VA, Amer. Meteor. Soc., 62–64.

  • Brooks, H. E., M. S. Tracton, D. J. Stensrud, G. DiMego, and Z. Toth, 1995: Short-range ensemble forecasting: Report from a workshop, 25–27 July 1994. Bull. Amer. Meteor. Soc.,76, 1617–1624.

  • ——, D. J. Stensrud, and C. A. Doswell III, 1996: Application of short-range NWP model ensembles to severe storm forecasting. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 372–375.

  • Buizza, R., 1997: Potential forecast skill of ensemble prediction and spread and skill distributions of the ECMWF ensemble prediction system. Mon. Wea. Rev.,125, 99–119.

    • Crossref
    • Export Citation
  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • ——, and R. M. Chervin, 1985: Statistical significance testing in numerical weather prediction. Mon. Wea Rev.,113, 814–826.

    • Crossref
    • Export Citation
  • Dubreuil, P., 1996: Overview of NWP research directions at Environment Canada. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 9J–11J.

  • Emanuel, K. A., E. N. Lorenz, and R. E. Morss, 1996: Adaptive observations. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 67–69.

  • Epstein, E. S., 1969: Stochastic dynamic prediction. Tellus,21, 739–759.

    • Crossref
    • Export Citation
  • Fuller, J. F., 1990: Thor’s Legions. Amer. Meteor. Soc., 443 pp.

    • Crossref
    • Export Citation
  • Gleeson, T. A., 1961: A statistical theory of meteorological measurements and predictions. J. Meteor.,18, 192–198.

    • Crossref
    • Export Citation
  • ——, 1970: Statistical-dynamic predictions. J. Appl. Meteor.,9, 333–344.

    • Crossref
    • Export Citation
  • Hamill, T. M., and S. J. Colucci, 1997a: Evaluation of eta–RSM ensemble probabilistic precipitation forecasts. Mon. Wea. Rev., in press.

    • Crossref
    • Export Citation
  • ——, and ——, 1997b: Verification of eta–RSM short-range ensemble forecasts. Mon. Wea. Rev.,125, 1312–1327.

    • Crossref
    • Export Citation
  • Harrison, M. S. J., 1996: Ensemble forecasting at the UK Meteorological Office. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 21J–23J.

  • Hoffman, R. N., and E. Kalnay, 1983: Lagged average forecasting, an alternative to Monte Carlo forecasting. Tellus,35A, 100–118.

    • Crossref
    • Export Citation
  • Hollingsworth, A., A. Lorenc, S. Tracton, K. Arpe, G. Cats, S. Uppala, and P. Kalberg, 1985: The response of numerical weather prediction systems to FGGE level IIb data. Part I: Analysis. Quart. J. Roy. Meteor. Soc.,111, 1–66.

    • Crossref
    • Export Citation
  • Houtekamer, P. L., L. Lefaivre, J. Derome, H. Ritchie, and H. L. Mitchell, 1996: A system approach to ensemble forecasting. Mon. Wea. Rev.,124, 1225–1242.

    • Crossref
    • Export Citation
  • Kalnay, E., and Z. Toth, 1996: Ensemble prediction at NCEP. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 19J–J20.

  • Leith, C. E., 1974: Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev.,102, 409–418.

    • Crossref
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic non-periodic flow. J. Atmos. Sci.,20, 130–141.

    • Crossref
    • Export Citation
  • ——, 1965: A study of the predictability of a 28-variable atmospheric model. Tellus,17, 321–333.

    • Crossref
    • Export Citation
  • ——, 1969: The predictability of a flow which possesses many scales of motion. Tellus,21, 289–307.

    • Crossref
    • Export Citation
  • ——, 1993: The Essence of Chaos. University of Washington Press, 227 pp.

  • Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc.,122, 73–119.

    • Crossref
    • Export Citation
  • Palmer, T. N., 1993: Extended-range atmospheric prediction and the Lorenz model. Bull. Amer. Meteor. Soc.,74, 49–65.

    • Crossref
    • Export Citation
  • ——, R. Mureau, and F. Molteni, 1990: The Monte Carlo forecast. Weather,45, 198–207.

    • Crossref
    • Export Citation
  • Reynolds, C., P. J. Webster, and E. Kalnay, 1994: Random error growth in NMC’s global forecasts. Mon. Wea Rev.,122, 1281–1305.

    • Crossref
    • Export Citation
  • Richardson, D. S., M. S. J. Harrison, K. B. Robertson, and A. P. Woodcock, 1996: Joint medium-range ensembles using UKMO, ECMWF and NCEP ensemble systems. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 26J–27J.

  • Shaw, R. H., and W. Innes, Eds., 1984: Some Meteorological Aspects of the D-Day Invasion of Europe: Proceedings of a Symposium. Amer. Meteor. Soc., 170 pp.

  • Shaw, R. S., 1981: Strange attractors, chaotic behavior, and information flow. Z. Naturforschung,36A, 80–112.

    • Crossref
    • Export Citation
  • Simmons, A. J., R. Mureau, and T. Petroliagis, 1995: Error growth and estimates of predictability from the ECMWF forecasting system. Quart. J. Roy Meteor. Soc.,121, 1739–1771.

    • Crossref
    • Export Citation
  • Stoss, L. A., and S. L. Mullen, 1995: The dependence of short-range 500-mb height forecasts on the initial flow regime. Wea. Forecasting,10, 353–368.

  • Tatarskiy, V. I., 1969: The use of dynamic equations in the probability prediction of the pressure field. Izv. Acad. Sci. USSR, Atmos. Oceanic, Phys.,5, 293–297.

  • Toth, Z., 1991: Intercomparison of circulation similarity measures. Mon. Wea Rev.,119, 55–64.

    • Crossref
    • Export Citation
  • ——, and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc.,74, 2317–2330.

    • Crossref
    • Export Citation
  • ——, and ——, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea Rev.,125, 3297–3319.

    • Crossref
    • Export Citation
  • ——, ——, S. Tracton, R. Wobus, and J. Irwin, 1997: A synoptic evaluation of the NCEP ensemble. Wea. Forecasting,12, 140–153.

    • Crossref
    • Export Citation
  • Tracton, M. S., and E. Kalnay, 1993: Operational ensemble prediction at the National Meteorological Center: Practical aspects. Wea. Forecasting,8, 379–398.

  • ——, J. Du, Z. Toth, and H. Juang, 1997: Short range ensemble forecasting (SREF) at NCEP/EMC. Preprints, 12th Conf. on Numerical Weather Prediction, in press.

  • Van den Dool, H., and L. Rukhovets, 1994: On the weights for an ensemble-averaged 6–10 day forecast. Wea. Forecasting,9, 457–465.

    • Crossref
    • Export Citation
  • Vislocky, R. L., and J. M. Fritsch, 1995: Improved model output statistics forecasts through model consensus. Bull. Amer. Meteor. Soc.,76, 1157–1164.

    • Crossref
    • Export Citation
  • Wobus, R. L., and E. Kalnay, 1995: Three years of operational prediction of forecast skill at NMC. Mon. Wea. Rev.,123, 2132–2148.

    • Crossref
    • Export Citation
  • ——, Z. Toth, S. Tracton, and E. Kalnay, 1996: How the NCEP ensemble works: Synoptic examples. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 29J–30J.

  • Zhu, Y., G. Iyengar, Z. Toth, M. S. Tracton, and T. Marchok, 1996: Objective evaluation of the NCEP global ensemble forecasting system. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 79J–82J.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 606 365 11
PDF Downloads 320 201 7

An Ensemble Forecasting Primer

View More View Less
  • 1 Department of Meteorology and NOAA/FSU Cooperative Institute for Tropical Meteorology, The Florida State University, Tallahassee, Florida
  • | 2 GSC, Environmental Modeling Center, NCEP, NWS/NOAA, Washington, D.C.
Restricted access

Abstract

An ensemble forecast is a collection (an ensemble) of forecasts that all verify at the same time. These forecasts are regarded as possible scenarios given the uncertainty associated with forecasting. With such an ensemble, one can address issues that go beyond simply estimating the best forecast. These include estimation of the probability of various events and estimation of the confidence that can be associated with a forecast.

Global ensemble forecasts out to 10 days have been computed at both the U.S. and European central forecasting centers since December 1992. Since 1995, the United States has computed experimental regional ensemble forecasts focusing on smaller-scale forecast uncertainties out to 2 days.

The authors address challenges associated with ensemble forecasting such as 1) formulating an ensemble, 2) choosing the number of forecasts in an ensemble, 3) extracting information from an ensemble of forecasts, 4) displaying information from an ensemble of forecasts, and 5) interpreting ensemble forecasts. Two synoptic- scale examples of ensemble forecasting from the winter of 1995/96 are also shown.

Corresponding author address: Dr. Jon E. Ahlquist, Department of Meteorology/CITM, The Florida State University, Tallahassee, FL 32306-3034.

Email: ahlquist@met.fsu.edu

Abstract

An ensemble forecast is a collection (an ensemble) of forecasts that all verify at the same time. These forecasts are regarded as possible scenarios given the uncertainty associated with forecasting. With such an ensemble, one can address issues that go beyond simply estimating the best forecast. These include estimation of the probability of various events and estimation of the confidence that can be associated with a forecast.

Global ensemble forecasts out to 10 days have been computed at both the U.S. and European central forecasting centers since December 1992. Since 1995, the United States has computed experimental regional ensemble forecasts focusing on smaller-scale forecast uncertainties out to 2 days.

The authors address challenges associated with ensemble forecasting such as 1) formulating an ensemble, 2) choosing the number of forecasts in an ensemble, 3) extracting information from an ensemble of forecasts, 4) displaying information from an ensemble of forecasts, and 5) interpreting ensemble forecasts. Two synoptic- scale examples of ensemble forecasting from the winter of 1995/96 are also shown.

Corresponding author address: Dr. Jon E. Ahlquist, Department of Meteorology/CITM, The Florida State University, Tallahassee, FL 32306-3034.

Email: ahlquist@met.fsu.edu

Save