• Baldwin, M. E., and Mitchell K. E. , 1997: The NCEP hourly multi-sensor U.S. precipitation analysis for operations and GCIP research. Preprints, 13th Conf. on Hydrology, Long Beach, CA, Amer. Meteor. Soc., 54–55.

    • Search Google Scholar
    • Export Citation
  • Black, T. L., 1994: The new NMC mesoscale Eta Model: Description and forecast examples. Wea. Forecasting, 9 , 265278.

  • Brewster, K., Carr F. , Lin N. , Straka J. , and Krause J. , 1994: A local analysis system for initializing real-time convective-scale models. Preprints, 10th Conf. on Numerical Weather Prediction, Portland, OR, Amer. Meteor. Soc., 596–598.

    • Search Google Scholar
    • Export Citation
  • Chen, F., Janjic Z. , and Mitchell K. , 1997: Impact of atmospheric surface layer parameterization in the new land-surface scheme of the NCEP mesoscale ETA numerical model. Bound.-Layer Meteor., 85 , 391421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtier, P., and Talagrand O. , 1987: Variational assimilation of meteorological observations with the adjoint vorticity equation. II: Numerical results. Quart. J. Roy. Meteor. Soc., 113 , 13291347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtier, P., and Coauthors. 1998: The ECMWF implementation of three dimensional variational assimilation (3D-Var). Part I: Formulation. Quart. J. Roy. Meteor. Soc., 124 , 17831808.

    • Search Google Scholar
    • Export Citation
  • Daley, R., 1992: The effect of serially correlated observation and model error on atmospheric data assimilation. Mon. Wea. Rev., 120 , 164177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derber, J. C., 1989: A variational continuous assimilation technique. Mon. Wea. Rev., 117 , 24372446.

  • Derber, J. C., and Bouttier F. , 1999: A reformulation of the background error covariance in the ECMWF Global Data Assimilation System. Tellus, 51A , 195221.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and Cohn S. E. , 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125 , 723757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gauthier, P., and Thépaut J-N. , 2001: Impact of the digital filter as a weak constraint in the preoperational 4DVAR assimilation system of Météo-France. Mon. Wea. Rev., 129 , 20892102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giering, R., cited. . 1999: Tangent linear and adjoint model compiler, users manual 1.4. [Available online at http://puddle.mit.edu/˜ralf/tarnc/menu.html.].

    • Search Google Scholar
    • Export Citation
  • Giering, R., and Kaminski T. , 1998: . ACM Trans. Math. Software, 24 , 437474.

  • Gill, P. E., Murray W. , and Wright M. H. , 1981: Practical Optimization. Academic Press, 401 pp.

  • Guo, Y-R., Kuo Y-H. , Dudhia J. , Parsons D. , and Rocken C. , 2000: Four-dimensional variational data assimilation of heterogeneous mesoscale observations for a strong convective case. Mon. Wea. Rev., 128 , 619643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T., Andrew M. , and Church T. , 2000: Conditional probabilities of significant tornadoes from RUC-2 forecasts. Wea. Forecasting, 15 , 461475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X-Y., and Lynch P. , 1993: Diabatic digital-filtering initialization: Application to the HIRLAM model. Mon. Wea. Rev., 121 , 589603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118 , 14291443.

  • Janjić, Z. I., . 1994: The step-mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., Mesinger F. , and Black T. L. , 1995: The pressure advection term and additive splitting in split-explicit models. Quart. J. Roy. Meteor. Soc., 121 , 953957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. Academic Press, 376 pp.

  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. J. Basic Eng., 82D , 3545.

  • Klinker, E., Rabier F. , Kelly G. , and Mahfouf J-F. , 2000: The ECMWF operational implementation of four-dimensional variational assimilation. III: Experimental results and diagnostics with operational configuration. Quart. J. Roy. Meteor. Soc., 126 , 11911215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeDimet, F-X., and Talagrand O. , 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus, 38A , 97110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, J. M., and Derber J. C. , 1985: The use of adjoint equations to solve a variational adjustment problem with advective constraints. Tellus, 37A , 309322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., Mitchell K. E. , Baldwin M. E. , Rogers E. , and DiMego G. , 1999: Test assimilation of the real-time, multi-sensor hourly precipitation analysis into the NCEP Eta Model. Preprints, Eighth Conf. on Mesoscale Processes, Boulder, CO, Amer. Meteor. Soc., 341–344.

    • Search Google Scholar
    • Export Citation
  • Lions, J. L., 1971: Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, 396 pp.

  • Łobocki, L., 1993: A procedure for the derivation of surface-layer bulk relationships from simplified second-order closure models. J. Appl. Meteor., 32 , 126138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 112 , 11771194.

  • Lynch, P., and Huang X. Y. , 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120 , 10191034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahfouf, J-F., and Rabier F. , 2000: The ECMWF operational implementation of four dimensional variational assimilation. Part II: Experimental results with improved physics. Quart. J. Roy. Meteor. Soc., 126 , 11711190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mesinger, F., Janjić Z. I. , Ničković S. , Gavrilov D. , and Deaven D. G. , 1988: The step-mountain coordinate: Model description and performance for cases of alpine lee cyclogenesis and for a case of an Appalachian redevelopment. Mon. Wea. Rev., 116 , 14931518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Navon, I. M., Zou X. , Derber J. , and Sela J. , 1992: Variational data assimilation with an adiabatic version of the NMC spectral model. Mon. Wea. Rev., 120 , 14331446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nocedal, J., 1980: Updating quasi-Newton matrices with limited storage. Math. Comput., 35 , 773782.

  • Park, S. K., and Droegemeier K. K. , 1997: Validity of the tangent linear approximation in a moist convective cloud model. Mon. Wea. Rev., 125 , 33203340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S. K., . 2000: Sensitivity analysis of a 3D convective storm: Implications for variational data assimilation and forecast error. Mon. Wea. Rev., 128 , 140159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S. K., and Zupanski D. , 2002: Four-dimensional variational data assimilation for mesoscale and storm-scale applications. Meteor. Atmos. Phys., in press.

    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and Derber J. , 1992: The National Meteorological Center's spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120 , 17471763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., Purser R. J. , Rogers E. , and Lin Y. , 1996: The regional 3d-variational analysis for the Eta Model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 454–455.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., Thépaut J-N. , and Courtier P. , 1998: Extended assimilation and forecast experiments with a four-dimensional variational assimilation system. Quart. J. Roy. Meteor. Soc., 124 , 18611887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabier, F., Jarvinen H. , Klinker E. , Mahfouf J-F. , and Simmons A. , 2000: The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126 , 11431170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, E., Parrish D. , Lin Y. , and DiMego G. , 1996: The NCEP Eta Data Assimilation System: Tests with regional 3-D variational analysis and cycling. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 105–106.

    • Search Google Scholar
    • Export Citation
  • Rogers, E., and Coauthors. 1997: Changes to the NCEP operational “Early” Eta analysis/forecast system. NOAA/NWS Tech. Procedures Bull. 447, 16 pp. [Available from Office of Meteorology, National Weather Service, 1325 East–West Highway, Silver Spring, MD 20910.].

    • Search Google Scholar
    • Export Citation
  • Rogers, E., Black T. , Collins W. , Manikin G. , Mesinger F. , Parrish D. , and DiMego G. , 2000: Changes to the NCEP Meso Eta analysis and forecast system: Assimilation of satellite radiances and increase in resolution. NOAA/NWS Tech. Procedures Bull. 473, 9 pp. [Available from Office of Meteorology, National Weather Service, 1325 East–West Highway, Silver Spring, MD 20910; or online at http://sgi62.wwb.noaa.gov:8080/ETA22TPB.].

    • Search Google Scholar
    • Export Citation
  • Sasaki, Y., 1970a: Some basic formalisms in numerical variational analysis. Mon. Wea. Rev., 98 , 875883.

  • Sasaki, Y., . 1970b: Numerical variational analysis with weak constraint and application to surface analysis of severe storm gust. Mon. Wea. Rev., 98 , 899910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shanno, D. F., 1985: Globally convergent conjugate gradient algorithms. Math. Program., 33 , 6167.

  • Sun, J., and Crook A. , 1994: Wind and thermodynamic retrieval from single-Doppler measurements of a gust front observed during Phoenix II. Mon. Wea. Rev., 122 , 10751091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., . 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54 , 16421661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., . 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55 , 835852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., . 2001: Real-time low-level wind and temperature analysis using single WSR-88D data. Wea. Forecasting, 16 , 117132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarantola, A., 1987: Inverse Problem Theory. Elsevier, 613 pp.

  • Thépaut, J-N., and Courtier P. , 1991: Four-dimensional variational data assimilation using the adjoint of a multilevel primitive-equation model. Quart. J. Roy. Meteor. Soc., 117 , 12251254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thépaut, J-N., Belaud G. , and Lemaitre G. , 1996: Dynamical structure functions in a four-dimensional variational assimilation: A case-study. Quart. J. Roy. Meteor. Soc., 122 , 535561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., and Edwards R. , 2000: An overview of environmental conditions and forecast implications of the 3 May 1999 tornado outbreak. Wea. Forecasting, 15 , 682699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., Droegemeier K. K. , Wong V. , Shapiro A. , and Brewster K. , 1995: ARPS version 4.0 users' guide. Center for Analysis and Prediction of Storms, University of Oklahoma, 380 pp. [Available from Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, OK 73019.].

    • Search Google Scholar
    • Export Citation
  • Zhao, Q., Black T. L. , and Baldwin M. , 1997: Implementation of the cloud scheme in the Eta Model at NCEP. Wea. Forecasting, 12 , 697712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, X., and Kuo Y-H. , 1996: Rainfall assimilation through an optimal control of initial and boundary conditions in a limited-area mesoscale model. Mon. Wea. Rev., 124 , 28592882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, X., and Xiao Q. , 2000: Studies on the initialization and simulation of a mature hurricane using a variational bogus data assimilation scheme. J. Atmos. Sci., 57 , 836860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, X., Navon I. M. , and Sela J. , 1993: Variational data assimilation with moist threshold processes using the NMC Spectral Model. Tellus, 45A , 370387.

    • Search Google Scholar
    • Export Citation
  • Zou, X., Xiao Q. , Lipton A. E. , and Modica G. D. , 2001: A numerical study of the effect of GOES Sounder cloud-cleared brightness temperatures on the prediction of Hurricane Felix. J. Appl. Meteor., 40 , 3455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zupanski, D., 1997: A general weak constraint applicable to operational 4DVAR data assimilation systems. Mon. Wea. Rev., 125 , 22742292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zupanski, D., and Mesinger F. , 1995: Four-dimensional variational assimilation of precipitation data. Mon. Wea. Rev., 123 , 11121127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zupanski, M., 1993a: Regional four-dimensional variational data assimilation in a quasi-operational forecasting environment. Mon. Wea. Rev., 121 , 23962408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zupanski, M., . 1993b: A preconditioning algorithm for large scale minimization problems. Tellus, 45A , 578592.

  • Zupanski, M., . 1996: A preconditioning algorithm for four-dimensional variational data assimilation. Mon. Wea. Rev., 124 , 25622573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zupanski, M., and Zupanski D. , 1995: Recent developments of the NMC's regional four-dimensional variational data assimilation system. Proc. Second Int. Symp. on Assimilation of Observations in Meteorology and Oceanography, Tokyo, Japan, WMO/TD-No. 651, 367–372.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 201 48 2
PDF Downloads 53 16 1

Fine-Resolution 4DVAR Data Assimilation for the Great Plains Tornado Outbreak of 3 May 1999

Dusanka ZupanskiNOAA/NCEP/UCAR Visiting Scientist Programs, Camp Springs, Maryland

Search for other papers by Dusanka Zupanski in
Current site
Google Scholar
PubMed
Close
,
Milija ZupanskiNOAA/NCEP/UCAR Visiting Scientist Programs, Camp Springs, Maryland

Search for other papers by Milija Zupanski in
Current site
Google Scholar
PubMed
Close
,
Eric RogersNOAA/NCEP/EMC, Camp Springs, Maryland

Search for other papers by Eric Rogers in
Current site
Google Scholar
PubMed
Close
,
David F. ParrishNOAA/NCEP/EMC, Camp Springs, Maryland

Search for other papers by David F. Parrish in
Current site
Google Scholar
PubMed
Close
, and
Geoffrey J. DiMegoNOAA/NCEP/EMC, Camp Springs, Maryland

Search for other papers by Geoffrey J. DiMego in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The National Centers for Environmental Prediction fine-resolution four-dimensional variational (4DVAR) data assimilation system is used to study the Great Plains tornado outbreak of 3 May 1999. It was found that the 4DVAR method was able to capture very well the important precursors for the tornadic activity, such as upper- and low-level jet streaks, wind shear, humidity field, surface CAPE, and so on. It was also demonstrated that, in this particular synoptic case, characterized by fast-changing mesoscale systems, the model error adjustment played a substantial role. The experimental results suggest that the common practice of neglecting the model error in data assimilation systems may not be justified in synoptic situations similar to this one.

Current affiliation: Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Corresponding author address: Dusanka Zupanski, Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO 80523-1375. Email: zupanski@cira.colostate.edu

Abstract

The National Centers for Environmental Prediction fine-resolution four-dimensional variational (4DVAR) data assimilation system is used to study the Great Plains tornado outbreak of 3 May 1999. It was found that the 4DVAR method was able to capture very well the important precursors for the tornadic activity, such as upper- and low-level jet streaks, wind shear, humidity field, surface CAPE, and so on. It was also demonstrated that, in this particular synoptic case, characterized by fast-changing mesoscale systems, the model error adjustment played a substantial role. The experimental results suggest that the common practice of neglecting the model error in data assimilation systems may not be justified in synoptic situations similar to this one.

Current affiliation: Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Corresponding author address: Dusanka Zupanski, Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO 80523-1375. Email: zupanski@cira.colostate.edu

Save