• Atger, F., 1999: The skill of ensemble prediction systems. Mon. Wea. Rev., 127 , 19411953.

  • Baldwin, M. E., Kay M. P. , and Kain J. S. , 2000: Properties of the convection scheme in NCEP's Eta model that affect forecast sounding analysis. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 447–449.

    • Search Google Scholar
    • Export Citation
  • Bartello, P., and Mitchell H. L. , 1992: A continuous three-dimensional model of short-range forecast error covariances. Tellus, 44A , 217235.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and Miller M. J. , 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112 , 693709.

    • Search Google Scholar
    • Export Citation
  • Black, T. L., 1994: The new NMC Mesoscale Eta Model: Description and forecast examples. Wea. Forecasting, 9 , 265278.

  • Blackadar, A. K., 1976: Modeling the nocturnal boundary layer. Preprints, Third Symp. on Atmospheric Turbulence, Diffusion and Air Quality, Raleigh, NC, Amer. Meteor. Soc., 46–49.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., . 1979: High resolution models of the planetary boundary layer. Advances in Environmental Science and Engineering, J. Pfafflin and E. Ziegler, Eds., Vol. 1, No. 1, Gordon and Breach, 50–85.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., Doswell III C. A. , and Wicker L. J. , 1993: STORMTIPE: A forecasting experiment using a three-dimensional cloud model. Wea. Forecasting, 8 , 352362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., and Cooper J. , 1994a: On the environments of tornadic and nontornadic mesocyclones. Wea. Forecasting, 9 , 606618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., and Wilhelmson R. B. , 1994b: On the role of midtropospheric winds in the evolution and maintenance of low-level mesocyclones. Mon. Wea. Rev., 122 , 126136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., 1997: Potential forecast skill of ensemble prediction and spread and skill distributions of the ECMWF ensemble prediction system. Mon. Wea. Rev., 125 , 99119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., and Palmer T. N. , 1995: The singular-vector structure of the atmospheric general circulation. J. Atmos. Sci., 52 , 14341456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., Miller M. , and Palmer T. N. , 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125 , 28872908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burk, S. D., and Thompson W. T. , 1989: A vertically nested regional numerical weather prediction model with second-order closure physics. Mon. Wea. Rev., 117 , 23052324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124 , 17671785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A,I. I. I., 1987: The distinction between large-scale and mesoscale contribution to severe convection: A case study example. Wea. Forecasting, 2 , 316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, J., Mullen S. L. , and Sanders F. , 1997: Short-range ensemble forecasting of quantitative precipitation. Mon. Wea. Rev., 125 , 24272459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121 , 14931513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, R., Corfidi S. F. , Thompson R. L. , Evans J. S. , Craven J. P. , Racy J. P. , McCarthy D. W. , and Vescio M. D. , 2002: Storm Prediction Center forecasting issues related to the 3 May 1999 tornado outbreak. Wea. Forecasting, . 17 , 544558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Epstein, E. S., 1969: Stochastic dynamic prediction. Tellus, 21 , 739759.

  • Evans, R. E., Harrison M. S. J. , Graham R. J. , and Mylne K. R. , 2000: Joint medium-range ensembles from the Met. Office and ECMWF systems. Mon. Wea. Rev., 128 , 31043127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., Hilliker J. , Ross J. , and Vislocky R. L. , 2000: Model consensus. Wea. Forecasting, 15 , 571582.

  • Gallus, W. A. Jr, 1999: Eta simulations of three extreme precipitation events: Sensitivity to resolution and convective parameterization. Wea. Forecasting, 14 , 405426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallus, W. A. Jr, and Segal M. , 2000: Sensitivity of forecast rainfall in a Texas convective system to soil moisture and convective parameterization. Wea. Forecasting, 15 , 509526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121 , 764787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., Dudhia J. , and Stauffer D. R. , 1994: A description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5). NCAR/TN-398+STR, 121 pp. [Available from MMM Division, NCAR, P.O. Box 3000, Boulder, CO 80307.].

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129 , 550560.

  • Hamill, T. M., and Colucci S. J. , 1997: Verification of Eta-RSM short-range ensemble forecasts. Mon. Wea. Rev., 125 , 13121327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., . 1998: Evaluation of Eta-RSM ensemble probabilistic precipitation forecasts. Mon. Wea. Rev., 126 , 711724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, M. S. J., Palmer T. N. , Richardson D. S. , and Buizza R. , 1999: Analysis and model dependencies in medium-range ensembles: Two transplant case studies. Quart. J. Roy. Meteor. Soc., 125 , 24872515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and Lefaivre L. , 1997: Using ensemble forecasts for model verification. Mon. Wea. Rev., 125 , 24162426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and Derome J. , 1996: The RPN ensemble prediction system. Proc. ECMWF Seminar on Predictability, Vol. II, Reading, United Kingdom, ECMWF, 121–146. [Available from ECMWF, Shinfield Park, Reading, Berkshire. RG2 9AX, United Kingdom.].

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 1994: The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and Doswell III C. A. , 1992: Severe local storms forecasting. Wea. Forecasting, 7 , 588612.

  • Kain, J. S., and Fritsch J. M. , 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47 , 27842802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., . 1992: The role of the convective “trigger function” in numerical forecasts of mesoscale convective systems. Meteor. Atmos. Phys., 49 , 93106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Baldwin M. E. , 2000: Parameterized updraft mass flux as a predictor of convective intensity. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 449–452.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., Stensrud D. J. , Baldwin M. E. , and Manikin G. S. , 1998: A comparison of two convective parameterization schemes in NCEP's Mesoeta Model and the implications for quantitative precipitation forecasting. Preprints, 12th Conf. on Numerical Weather Prediction, Phoenix, AZ, Amer. Meteor. Soc., J24–J26.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., Lord S. J. , and McPherson R. D. , 1998: Maturity of operational numerical weather prediction: Medium range. Bull. Amer. Meteor. Soc., 79 , 27532769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1974: Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev., 102 , 409418.

  • Markowski, P. M., Straka J. M. , Rasmussen E. N. , and Blanchard D. O. , 1998: Variability of storm-relative helicity during VORTEX. Mon. Wea. Rev., 126 , 29592971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molteni, F., Buizza R. , Palmer T. N. , and Petroliagis T. , 1996: The ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122 , 73119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1977: The value of climatological, categorical, and probabilistic forecasts in the cost-loss ratio situation. Mon. Wea. Rev., 105 , 803816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mullen, S. L., and Baumhefner D. P. , 1988: Sensitivity to numerical simulations of explosive oceanic cyclogenesis to changes in physical parameterizations. Mon. Wea. Rev., 116 , 22892329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mullen, S. L., . 1994: Monte Carlo simulations of explosive cyclogenesis. Mon. Wea. Rev., 122 , 15481567.

  • Rasmussen, E. N., and Blanchard D. O. , 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13 , 11481164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 2001: Using short-range ensemble forecasts for predicting severe weather events. Atmos. Res., 56 , 317.

  • Stensrud, D. J., Cortinas Jr. J. V. , and Brooks H. E. , 1997: Discriminating between tornadic and nontornadic thunderstorms using mesoscale model output. Wea. Forecasting, 12 , 613632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., Brooks H. E. , Du J. , Tracton M. S. , and Rogers E. , 1999: Using ensembles for short-range forecasting. Mon. Wea. Rev., 127 , 433446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., Bao J-W. , and Warner T. T. , 2000: Using initial condition and model physics perturbations in short-range ensembles of mesoscale convective systems. Mon. Wea. Rev., 128 , 20772107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theibaux, H. J., Morone L. L. , and Wobus R. L. , 1990: Global forecast error correlations: Isobaric wind and geopotential. Mon. Wea. Rev., 118 , 21172137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, P. D., 1977: How to improve accuracy by combining independent forecasts. Mon. Wea. Rev., 105 , 228229.

  • Thompson, R. L., 1998: Eta Model storm-relative winds associated with tornadic and nontornadic supercells. Wea. Forecasting, 13 , 125137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., and Edwards R. , 2000: An overview of environmental conditions and forecast implications of the 3 May 1999 tornado outbreak. Wea. Forecasting, 15 , 682699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., and Kalnay E. , 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74 , 23172330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, Z., . 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125 , 32973319.

  • Tracton, M. S., and Kalnay E. , 1993: Ensemble forecasting at NMC: Operational implementation. Wea. Forecasting, 8 , 379398.

  • Tracton, M. S., Du J. , Toth Z. , and Juang H. , 1998: Short-range ensemble forecasting (SREF) at NCEP/EMC. Preprints, 12th Conf. on Numerical Weather Prediction, Phoenix, AZ, Amer. Meteor. Soc., 269–272.

    • Search Google Scholar
    • Export Citation
  • Wandishin, M. S., Mullen S. L. , Stensrud D. J. , and Brooks H. E. , 2001: Evaluation of a short-range multimodel ensemble system. Mon. Wea. Rev., 129 , 729747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., and Seaman N. L. , 1997: A comparison study of convective parameterization schemes in a mesoscale model. Mon. Wea. Rev., 125 , 252278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, T. T., and Hsu H-M. , 2000: Nested-model simulation of moist convection: The impact of coarse-grid parameterized convection on fine-grid resolved convection. Mon. Wea. Rev., 128 , 22112231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, S. J., 1996: Operational evaluation of the Mesoeta Model for the prediction of severe local storms. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 367–371.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., Kay M. P. , and Foster M. P. , 1997: STORMTIPE-95: Results from a convective storm forecast experiment. Wea. Forecasting, 12 , 388398.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Zhang, D-L., 1989: The effect of parameterized ice microphysics on the simulation of vortex circulation with a mesoscale hydrostatic model. Tellus, 41A , 132147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., and Anthes R. A. , 1982: A high-resolution model of the planetary boundary layer—sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21 , 15941609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziehmann, C., 2000: Comparison of a single-model EPS with a multi-model ensemble consisting of a few operational models. Tellus, 52A , 280299.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 213 60 1
PDF Downloads 65 29 2

Mesoscale Model Ensemble Forecasts of the 3 May 1999 Tornado Outbreak

David J. StensrudNOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by David J. Stensrud in
Current site
Google Scholar
PubMed
Close
and
Steven J. WeissNOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma

Search for other papers by Steven J. Weiss in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A six-member ensemble is developed in which the ensemble members only vary in their model physical process parameterization schemes. This approach is accomplished by mixing three different convective parameterization schemes with two different planetary boundary layer schemes within the nonhydrostatic Pennsylvania State University–National Center for Atmospheric Research Fifth-Generation Mesoscale Model (MM5). The initial and boundary conditions for each ensemble member are identical and are provided by the National Centers for Environmental Prediction Eta Model forecasts starting from 0000 UTC. Verification of the ensemble predictions against Eta Model analyses over 42 days indicates that, although this ensemble system is underdispersive and imperfect, the ensemble forecasts show some skill in predicting the probability of various severe-weather parameters exceeding selected threshold values. This model physics ensemble allows us to begin exploring the possible uses of ensemble forecasts for severe-weather events. Results from this six-member ensemble forecasting system of the 3 May 1999 tornado outbreak indicate that the ensemble provides a strong signal of two mesoscale-sized regions, one in Oklahoma and Kansas and the other in eastern Nebraska, that have the potential for supporting tornadic supercell thunderstorms. Several of the model forecasts also produce convection in these regions. Tornadic thunderstorm reports are found in both of these areas. This ensemble guidance does not provide any clues as to why the tornadoes in Oklahoma and Kansas were so severe, as compared with those in Nebraska, but it does provide hope that ensembles may be useful for short-range forecasting of severe weather.

Corresponding author address: Dr. David J. Stensrud, NSSL, 1313 Halley Circle, Norman, OK 73069. Email: david.stensrud@nssl.noaa.gov

Abstract

A six-member ensemble is developed in which the ensemble members only vary in their model physical process parameterization schemes. This approach is accomplished by mixing three different convective parameterization schemes with two different planetary boundary layer schemes within the nonhydrostatic Pennsylvania State University–National Center for Atmospheric Research Fifth-Generation Mesoscale Model (MM5). The initial and boundary conditions for each ensemble member are identical and are provided by the National Centers for Environmental Prediction Eta Model forecasts starting from 0000 UTC. Verification of the ensemble predictions against Eta Model analyses over 42 days indicates that, although this ensemble system is underdispersive and imperfect, the ensemble forecasts show some skill in predicting the probability of various severe-weather parameters exceeding selected threshold values. This model physics ensemble allows us to begin exploring the possible uses of ensemble forecasts for severe-weather events. Results from this six-member ensemble forecasting system of the 3 May 1999 tornado outbreak indicate that the ensemble provides a strong signal of two mesoscale-sized regions, one in Oklahoma and Kansas and the other in eastern Nebraska, that have the potential for supporting tornadic supercell thunderstorms. Several of the model forecasts also produce convection in these regions. Tornadic thunderstorm reports are found in both of these areas. This ensemble guidance does not provide any clues as to why the tornadoes in Oklahoma and Kansas were so severe, as compared with those in Nebraska, but it does provide hope that ensembles may be useful for short-range forecasting of severe weather.

Corresponding author address: Dr. David J. Stensrud, NSSL, 1313 Halley Circle, Norman, OK 73069. Email: david.stensrud@nssl.noaa.gov

Save