• Baldwin, M. E., Lakshmivarahan S. , and Kain J. S. , 2001: Verification of mesoscale features in NWP models. Preprints, Ninth Conf. on Mesoscale Processes, Fort Lauderdale, FL, Amer. Meteor. Soc., 255–258.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., Brown J. M. , Brundage K. J. , Schwartz B. E. , Smirnova T. G. , and Smith T. L. , 1998: The operational RUC-2. Preprints, 16th Conf. on Weather Analysis and Forecasting, Phoenix, AZ, Amer. Meteor. Soc., 249–252.

    • Search Google Scholar
    • Export Citation
  • Black, T. L., 1994: The new NMC mesoscale Eta model: Description and forecast examples. Wea. Forecasting, 9 , 265278.

  • Blanchard, D. O., 1998: Assessing the vertical distribution of convective available potential energy. Wea. Forecasting, 13 , 870877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., and Parks C. R. , 1983: A synoptic and photographic climatology of low-precipitation severe thunderstorms in the southern plains. Mon. Wea. Rev., 111 , 20342046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, C., 2000: A quantitative investigation of entrainment and detrainment in numerically simulated cumulonimbus clouds. J. Atmos. Sci., 57 , 16571674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., Simpson J. , and Tao W-K. , 1996: Factors responsible for precipitation efficiencies in midlatitude and tropical squall simulations. Mon. Wea. Rev., 124 , 21002125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., Chappell C. F. , and Hoxit L. R. , 1976: The use of large-scale budgets for convective parameterization. Mon. Wea. Rev., 104 , 14081418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122 , 927945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and Doswell C. A. III, 1992: Severe local storms forecasting. Wea. Forecasting, 7 , 588612.

  • Kain, J. S., and Fritsch J. M. , 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47 , 27842802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Fritsch J. M. , 1992: The role of the convective “trigger function” in numerical forecasts of mesoscale convective systems. Meteor. Atmos. Phys., 49 , 93106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Fritsch J. M. , 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., Baldwin M. E. , Stensrud D. J. , Black T. L. , and Manikin G. S. , 1998: Considerations for the implementation of a convective parameterization scheme in an operational mesoscale model. Preprints, 12th Conf. on Numerical Weather Prediction, Phoenix, AZ, Amer. Meteor. Soc., 103–106.

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., 1989: Numerical simulation of low-level downdraft initiation within precipitating cumulonimbi: Some preliminary results. Mon. Wea. Rev., 117 , 15171529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., and Cotton W. R. , 1985: Convective cloud downdraft structure: An interpretive survey. Rev. Geophys., 23 , 183215.

  • National Climatic Data Center, 2001: Storm Data. Vol. 43, No. 5, 306 pp. [Available from National Climatic Data Center, 151 Patton Ave., Asheville, NC 28801-5001.].

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and Blanchard D. O. , 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13 , 11481164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1987: A model of intense downdrafts driven by the melting and evaporation of precipitation. J. Atmos. Sci., 44 , 17521773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., 1985: Forecasting dry microburst activity over the high plains. Mon. Wea. Rev., 113 , 11311143.

  • Weisman, M. L., and Klemp J. B. , 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110 , 504520.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 4
PDF Downloads 3 3 3

Parameterized Updraft Mass Flux as a Predictor of Convective Intensity

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma–NOAA Research, and National Severe Storms Laboratory, Norman, Oklahoma
  • | 2 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma–NOAA Research, National Severe Storms Laboratory, and NOAA/NWS Storm Prediction Center, Norman, Oklahoma
  • | 3 NOAA/NWS Storm Prediction Center, Norman, Oklahoma
Restricted access

Abstract

Parameterized updraft mass flux, available as a unique predictive field from the Kain–Fritsch (KF) convective parameterization, is presented as a potentially valuable predictor of convective intensity. The KF scheme is described in some detail, focusing on a version that is currently being run semioperationally in an experimental version of the Eta Model. It is shown that updraft mass flux computed by this scheme is a function of the specific algorithm that it utilizes and is very sensitive to the thermodynamic characteristics of input soundings. These same characteristics appear to be related to the severity of convection, suggesting that updraft mass flux predicted by the KF scheme has value for predicting severe weather. This argument is supported by anecdotal evidence and a case study.

Corresponding author address: Dr. John S. Kain, NSSL, 1313 Halley Circle, Norman, OK 73069. Email: kain@nssl.noaa.gov

Abstract

Parameterized updraft mass flux, available as a unique predictive field from the Kain–Fritsch (KF) convective parameterization, is presented as a potentially valuable predictor of convective intensity. The KF scheme is described in some detail, focusing on a version that is currently being run semioperationally in an experimental version of the Eta Model. It is shown that updraft mass flux computed by this scheme is a function of the specific algorithm that it utilizes and is very sensitive to the thermodynamic characteristics of input soundings. These same characteristics appear to be related to the severity of convection, suggesting that updraft mass flux predicted by the KF scheme has value for predicting severe weather. This argument is supported by anecdotal evidence and a case study.

Corresponding author address: Dr. John S. Kain, NSSL, 1313 Halley Circle, Norman, OK 73069. Email: kain@nssl.noaa.gov

Save