• Anthes, R. A., 1986: The general question of predictability. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 636–656.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., , and Mailhot J. , 2001: Impact of horizontal resolution on the numerical simulation of a midlatitude squall line: Implicit versus explicit condensation. Mon. Wea. Rev., 129 , 23622376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernardet, L. R., , and Cotton W. R. , 1998: Multiscale evolution of a derecho-producing mesoscale convective system. Mon. Wea. Rev., 126 , 29913015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1979: High resolution models of the planetary boundary layer. Advances in Environmental Science and Engineering, J. Pfafflin and E. Ziegler, Eds., Vol. 1, No. 1, Gordon and Breach, 50–85.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1993: Observations and Theory of Weather Systems. Vol. II. Synoptic–Dynamic Meteorology in Midlatitudes, Oxford University Press, 594 pp.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., , McCaul E. W. Jr., , Byrd G. P. , , and Woodall G. R. , 1988: Mobile sounding observations of a tornadic storm near the dryline: The Canadian, Texas storm of 7 May 1986. Mon. Wea. Rev., 116 , 17901804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., , Doswell C. A. III, , and Maddox R. A. , 1992: On the use of mesoscale and cloud-scale models in operational forecasting. Wea. Forecasting, 7 , 120132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1980: Evidence of urban and lake influence on precipitation in the Chicago area. J. Appl. Meteor., 19 , 11371159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., , Westrick K. J. , , and Mass C. F. , 1999: Evaluation of MM5 and Eta-10 precipitation forecasts over the Pacific Northwest during the cool season. Wea. Forecasting, 14 , 137154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cressman, G., 1959: An operational objective analysis system. Mon. Wea. Rev., 87 , 367374.

  • Du, J., , Mullen S. L. , , and Sanders F. , 1997: Short-range ensemble forecasting of quantitative precipitation. Mon. Wea. Rev., 125 , 24272459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121 , 14931513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1996: A multi-layer soil temperature model for MM5. Preprints, Sixth Annual PSU/NCAR Mesoscale Model Users' Workshop, Boulder, CO, National Center for Atmospheric Research, 49–50.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , and Raymond D. J. , Eds. 1993: The Representation of Cumulus Convection in Numerical Models. Meteor. Monogr., No. 46, Amer. Meteor. Soc., 246 pp.

    • Search Google Scholar
    • Export Citation
  • Finley, C. A., , Cotton W. R. , , and Pielke R. A. Sr., 2001: Numerical simulation of tornadogenesis in a high-precipitation supercell. Part I: Storm evolution and transition into a bow echo. J. Atmos. Sci., 58 , 15971629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and Coauthors. 1998: Quantitative precipitation forecasting: Report of the Eighth Prospectus Development Team, U.S. Weather Research Program. Bull. Amer. Meteor. Soc., 79 , 285298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gall, R., , and Shapiro M. , 2000: The influence of Carl-Gustaf Rossby on mesoscale weather prediction and an outlook for the future. Bull. Amer. Meteor. Soc., 81 , 15071523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., 1998: Mesoscale convective systems in the southeast United States during 1994–95: A survey. Wea. Forecasting, 13 , 860869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., , Dudhia J. , , and Stauffer D. R. , 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 138 pp. [Available from NCAR, P.O. Box 3000, Boulder, CO 80307-3000.].

    • Search Google Scholar
    • Export Citation
  • Hane, C. E., 1986: Extratropical squall lines and rainbands. Mesoscale Meteorology and Forecasting, P. S. Ray., Ed., Amer Meteor Soc., 359–389.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Houze, R. A., , Rutledge S. A. , , Biggerstaff M. I. , , and Smull B. F. , 1989: Interpretation of Doppler weather radar displays of mid-latitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70 , 608619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., , and Fritsch J. M. , 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , Moncrieff M. W. , , and Grabowski W. W. , 2001: Explicit and parameterized realizations of convective cloud systems in TOGA COARE. Mon. Wea. Rev., 129 , 16891703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., , Zhang D-L. , , and Yau M. K. , 1997: A multiscale numerical study of Hurricane Andrew (1992). Part I: Explicit simulation and verification. Mon. Wea. Rev., 125 , 30733093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loehrer, S. M., , and Johnson R. H. , 1995: Surface pressure and precipitation life cycle characteristics of PRE-STORM mesoscale convective systems. Mon. Wea. Rev., 123 , 600621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynn, B. H., and Coauthors. 2001: Improved simulation of Florida summer convection using the PLACE land model and a 1.5-order turbulence parameterization coupled to the Penn State–NCAR Mesoscale Model. Mon. Wea. Rev., 129 , 14411461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nachamkin, J. E., , and Cotton W. R. , 2000: Interactions between a developing mesoscale convective system and its environment. Part II: Numerical simulation. Mon. Wea. Rev., 128 , 12251244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olson, D. A., , Junker N. W. , , and Korty B. , 1995: Evaluation of 33 years of quantitative precipitation forecasting at NMC. Wea. Forecasting, 10 , 498511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oravec, R. J., , and Grumm R. H. , 1993: The prediction of rapidly deepening cyclones by NMC's Nested Grid Model: Winter 1989–autumn 1991. Wea. Forecasting, 8 , 248270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., , and Johnson R. H. , 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128 , 34133436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, R. A., , and Stackpole J. D. , 1989: Overview of the NMC production suite. Wea. Forecasting, 4 , 313322.

  • Reisner, J., , Rasmussen R. M. , , and Bruintjes R. T. , 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124B , 10711108.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., , and Bosart L. F. , 1998: The sensitivity of precipitation to circulation details. Part I: An analysis of regional analogs. Mon. Wea. Rev., 126 , 437455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., , and Gehring M. G. , 2000: Real-time prediction of the lake breeze on the western shore of Lake Michigan. Wea. Forecasting, 15 , 298312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., , and Eise J. , 2001: The 21 June flood: Storm-scale simulations and implications for operational forecasting. Wea. Forecasting, 16 , 197218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., , and Reuter G. W. , 2002: The sensitivity of precipitation to circulation details. Part II: Mesoscale modeling. Mon. Wea. Rev., 130 , 323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., , Schultz D. M. , , and Romero R. , 2002: Synoptic regulation of the 3 May 1999 tornado outbreak. Wea. Forecasting, 17 , 399429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romero, R., , Doswell C. A. , , and Riosalido R. , 2001: Observations and fine-grid simulations of a convective outbreak in northeastern Spain: Importance of diurnal forcing and convective cold pools. Mon. Wea. Rev., 129 , 21572182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothfusz, L. P., 2000: National Weather Service warnings: Comparing expectations with reality. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 311–314.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., 1987: Skill of NMC operational dynamical models in prediction of explosive cyclogenesis. Wea. Forecasting, 2 , 322336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiner, M., , Houze R. A. Jr., , and Yuter S. E. , 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34 , 19782007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., , and Weiss S. J. , 2002: Mesoscale model ensemble forecasts of the 3 May 1999 tornado outbreak. Wea. Forecasting, 17 , 526543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., , Cortinas J. V. Jr., , and Brooks H. E. , 1997: Discriminating between tornadic and nontornadic thunderstorms using mesoscale model output. Wea. Forecasting, 12 , 613632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., , Bao J-W. , , and Warner T. T. , 2000: Using initial condition and model physics perturbations in short-range ensembles of mesoscale convective systems. Mon. Wea. Rev., 128 , 20772107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., , and Seaman N. L. , 1997: A comparison study of convective parameterization schemes in a mesoscale model. Mon. Wea. Rev., 125 , 252278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, T. T., , and Hsu H-M. , 2000: Nested-model simulation of moist convection: The impact of coarse-grid parameterized convection on fine-grid resolved convection. Mon. Wea. Rev., 128 , 22112231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , and Klemp J. B. , 1986: Characteristics of isolated convective storms. Mesoscale Meteorology and Forecasting, P. S. Ray., Ed., Amer. Meteor. Soc., 331–358.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in Atmospheric Sciences: An Introduction. Academic Press, 500 pp.

  • Zhang, D-L., , and Anthes R. A. , 1982: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21 , 15941609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D-L., , Chang H-R. , , Seaman N. L. , , Warner T. T. , , and Fritsch J. M. , 1986: A two-way interactive nesting procedure with variable terrain resolution. Mon. Wea. Rev., 114 , 13301339.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 128 128 6
PDF Downloads 41 41 3

Short-Range (0–48 h) Numerical Prediction of Convective Occurrence, Mode, and Location

View More View Less
  • 1 Atmospheric Sciences Group, Department of Mathematical Sciences, University of Wisconsin—Milwaukee, Milwaukee, Wisconsin
© Get Permissions
Restricted access

Abstract

A verification of high-resolution (6-km grid spacing) short-range (0–48 h) numerical model forecasts of warm-season convective occurrence, mode, and location was conducted over the Lake Michigan region. All available days from 5 April through 20 September 1999 were evaluated using 0.5° base reflectivity and accumulated precipitation products from the national radar network and the day-1 (0–24 h) and day-2 (24–48 h) forecasts from a quasi-operational version of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). Contingency measures show forecast skill for convective occurrence is high, with day-1 (day 2) equitable threat scores and Kuipers skill scores (KSS) of 0.69 (0.60) and 0.84 (0.75), respectively. Forecast skill in predicting convective mode (defined as linear, multicellular, or isolated) is also high, with KSS of 0.91 (0.86) for day 1 (day 2). Median timing errors for convective initiation/dissipation were within 2.5 h for all modes of convection at both forecast ranges. Forecasts of the areal coverage of the 24-h accumulated precipitation in convective events exhibited skill comparable to the lower-resolution, operational models, with median threat scores at day 1 (day 2) of 0.21 (0.24). When small displacements (less than 85 km) in the precipitation pattern were taken into account, threat scores increased to as high as 0.44 for the most organized convective modes. The implications of these results for the use of mesoscale models in operational forecasting are discussed.

Current affiliation: Iowa Department of Natural Resources, Urbandale, Iowa

Corresponding author address: Paul J. Roebber, Dept. of Mathematical Sciences, University of Wisconsin—Milwaukee, 3200 N. Cramer Ave., Milwaukee, WI 53211. Email: roebber@uwm.edu

Abstract

A verification of high-resolution (6-km grid spacing) short-range (0–48 h) numerical model forecasts of warm-season convective occurrence, mode, and location was conducted over the Lake Michigan region. All available days from 5 April through 20 September 1999 were evaluated using 0.5° base reflectivity and accumulated precipitation products from the national radar network and the day-1 (0–24 h) and day-2 (24–48 h) forecasts from a quasi-operational version of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). Contingency measures show forecast skill for convective occurrence is high, with day-1 (day 2) equitable threat scores and Kuipers skill scores (KSS) of 0.69 (0.60) and 0.84 (0.75), respectively. Forecast skill in predicting convective mode (defined as linear, multicellular, or isolated) is also high, with KSS of 0.91 (0.86) for day 1 (day 2). Median timing errors for convective initiation/dissipation were within 2.5 h for all modes of convection at both forecast ranges. Forecasts of the areal coverage of the 24-h accumulated precipitation in convective events exhibited skill comparable to the lower-resolution, operational models, with median threat scores at day 1 (day 2) of 0.21 (0.24). When small displacements (less than 85 km) in the precipitation pattern were taken into account, threat scores increased to as high as 0.44 for the most organized convective modes. The implications of these results for the use of mesoscale models in operational forecasting are discussed.

Current affiliation: Iowa Department of Natural Resources, Urbandale, Iowa

Corresponding author address: Paul J. Roebber, Dept. of Mathematical Sciences, University of Wisconsin—Milwaukee, 3200 N. Cramer Ave., Milwaukee, WI 53211. Email: roebber@uwm.edu

Save