• Adams, D. K., and Comrie A. C. , 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78 , 21972213.

  • Alexander, G. D., Weinman J. A. , Karyampudi V. M. , Olson W. S. , and Lee A. C. L. , 1999: The effect of assimilating rain rates derived from satellites and lightning on forecasts of the 1993 superstorm. Mon. Wea. Rev., 127 , 14331457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1965: Some factors governing precipitation and lightning from convective clouds. J. Atmos. Sci., 22 , 7984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burrows, W. R., King P. , Lewis P. J. , Kochtubajda B. , Snyder B. , and Turcotte V. , 2002: Lightning occurrence patterns over Canada and adjacent United States from lightning detection network observations. Atmos.–Ocean, 40 , 5981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, D. E., Weinman J. A. , Morales C. A. , and Olson W. S. , 2001: The effect of spaceborne microwave and ground-based continuous lightning measurements on forecasts of the 1998 Groundhog Day storm. Mon. Wea. Rev., 129 , 18101833.

    • Search Google Scholar
    • Export Citation
  • Chisholm, W. A., 2003: Estimates of lightning ground flash density using optical transient density. Proc. 2003 IEEE Power Engineering Society Transmission and Distribution (T&D) Conf., Dallas, TX, IEEE, Panel Session 10, CD-ROM, Paper 195.

  • Cummins, K. L., Murphy M. J. , Bardo E. A. , Hiscox W. L. , Pyle R. B. , and Pifer A. E. , 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103 , 90359044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de la Rosa, F., and Velàzquez R. , 1989: Review of ground flash density measuring devices regarding power system applications. IEEE Trans. Power Delivery, 4 , 921925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de la Rosa, F., Galvan A. , and Velazquez R. , 1996: Evaluation of surge arresters protection of electric power lines in Mexico. CIGRE Int. Workshop on Line Surge Arresters and Lightning, Rio de Janeiro, Brazil, CIGRE and IEEE, Paper 3, 1–8.

  • Douglas, M. W., Maddox R. A. , Howard K. , and Reyes S. , 1993: The Mexican monsoon. J. Climate, 6 , 16651677.

  • Gosz, J. R., Moore D. I. , Shore G. A. , Grover H. D. , Rison W. , and Rison C. , 1995: Lightning estimates of precipitation location and quantity on the Sevilleta LTER, New Mexico. Ecol. Appl., 5 , 11411150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herodotou, N., Chisholm W. A. , and Janischewskyj W. , 1993: Distribution of lightning peak currents in Ontario using an LLP system. IEEE Trans. Power Delivery, 8 , 13311339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, W., 2003: Overview of the North American Monsoon Experiment (NAME). Preprints, Symp. on Observing and Understanding the Variability of Water in Weather and Climate, Long Beach, CA, Amer. Meteor. Soc., CD-ROM, 4.2.

  • Idone, V. P., Davis D. A. , Moore P. K. , Wang Y. , Henderson R. W. , Ries M. , and Jamason P. F. , 1998a: Performance evaluation of the U.S. National Lightning Detection Network in eastern New York. Part I: Detection efficiency. J. Geophys. Res., 103 , 90459055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Idone, V. P., Davis D. A. , Moore P. K. , Wang Y. , Henderson R. W. , Ries M. , and Jamason P. F. , 1998b: Performance evaluation of the U.S. National Lightning Detection Network in eastern New York. Part II: Location accuracy. J. Geophys. Res., 103 , 90579069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • López, R. E., and Holle R. L. , 1986: Diurnal and spatial variability of lightning activity in northeastern Colorado and central Florida during the summer. Mon. Wea. Rev., 114 , 12881312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norton, K. A., 1936: The propagation of radio waves over the surface of the earth and in the upper atmosphere. Proc. Inst. Radio Eng., 24 , 13671387.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., 1991: Lightning ground flash density in the contiguous United States—1989. Mon. Wea. Rev., 119 , 573577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and Huffines G. R. , 2001: Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989–98. Mon. Wea. Rev., 129 , 11791193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orville, R. E., Huffines G. R. , Burrows W. R. , Holle R. L. , and Cummins K. L. , 2002: The North American Lightning Detection Network (NALDN)—First results: 1998–2000. Mon. Wea. Rev., 130 , 20982109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and Rutledge S. A. , 1998: On the relationship between cloud-to-ground lightning and convective rainfall. J. Geophys. Res., 103 , 1402514040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soula, S., Sauvageot H. , Molinie G. , Mesnard F. , and Chauzy S. , 1998: The CG lightning activity of a storm causing a flash flood. Geophys. Res. Lett., 25 , 11811184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zajac, B. A., and Rutledge S. A. , 2001: Cloud-to-ground lightning activity in the contiguous United States from 1995 to 1999. Mon. Wea. Rev., 129 , 9991019.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 126 57 4
PDF Downloads 64 17 3

Where Is the Real Cloud-to-Ground Lightning Maximum in North America?

View More View Less
  • 1 Vaisala, Inc., Tucson Operations, Tucson, Arizona
  • | 2 Holle Meteorology and Photography, Oro Valley, Arizona
Restricted access

Abstract

A local maximum in cloud-to-ground (CG) lightning flash density over northwestern Mexico as measured by the U.S. National Lightning Detection Network is examined in detail. Corrections are derived for the relative detection efficiency of the network in this region that is outside the perimeter of the sensors. The need to adjust the parameters of the signal normalization model used for the network is also documented. New propagation model parameters are employed to derive relative detection efficiency corrections for northwestern Mexico and these are then used to show that the actual CG flash density over the region significantly exceeds that observed in Florida, the area with the highest flash density within the perimeter of the network.

Corresponding author address: Martin Murphy, Vaisala Inc., Tucson Operations, 2705 E. Medina Rd., Tucson, AZ 85706-7155. Email: martin.murphy@vaisala.com

Abstract

A local maximum in cloud-to-ground (CG) lightning flash density over northwestern Mexico as measured by the U.S. National Lightning Detection Network is examined in detail. Corrections are derived for the relative detection efficiency of the network in this region that is outside the perimeter of the sensors. The need to adjust the parameters of the signal normalization model used for the network is also documented. New propagation model parameters are employed to derive relative detection efficiency corrections for northwestern Mexico and these are then used to show that the actual CG flash density over the region significantly exceeds that observed in Florida, the area with the highest flash density within the perimeter of the network.

Corresponding author address: Martin Murphy, Vaisala Inc., Tucson Operations, 2705 E. Medina Rd., Tucson, AZ 85706-7155. Email: martin.murphy@vaisala.com

Save