• Benjamin, S. G., and Seaman N. L. , 1985: A simple scheme for objective analysis in curved flow. Mon. Wea. Rev., 113 , 11841198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., Grell G. A. , Brown J. M. , Smirnova T. G. , and Bleck R. , 2004a: Mesoscale weather prediction with the RUC hybrid isentropic terrain-following coordinate model. Mon. Wea. Rev., 132 , 473494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004b: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132 , 495518.

  • Bratseth, A. M., 1986: Statistical interpolation by means of successive corrections. Tellus, 38A , 439447.

  • Brewster, K. A., 1996: Application of a Bratseth analysis scheme including Doppler radar data. Preprints, 15th Conf. on Weather Analysis and Forecasting, Norfolk, VA, Amer. Meteor. Soc., 92–95.

  • Carr, F. H., Krause J. M. , and Brewster K. , 1996: Application of the Bratseth scheme to high-resolution analyses in inhomogeneous data regimes. Preprints, 15th Conf. on Weather Analysis and Forecasting, Norfolk, VA, Amer. Meteor. Soc., 231–234.

  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • Dee, D. P., and da Silva A. M. , 1998: Data assimilation in the presence of forecast bias. Quart. J. Roy. Meteor. Soc., 124 , 269295.

  • Deng, X., and Stull R. , 2005: A mesoscale analysis method for surface potential temperature in mountainous and coastal terrain. Mon. Wea. Rev., 133 , 389408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doran, J. C., Fast J. D. , and Horel J. D. , 2002: The VTMX 2000 campaign. Bull. Amer. Meteor. Soc., 83 , 537551.

  • Doswell, C. A., and Lasher-Trapp S. , 1997: On measuring the degree of irregularity in an observing network. J. Atmos. Oceanic Technol., 14 , 120132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Endlich, R. M., and Mancuso L. , 1968: Objective analysis of environmental conditions associated with severe thunderstorms and tornadoes. Mon. Wea. Rev., 96 , 342350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franke, R., 1988: Statistical interpolation by iteration. Mon. Wea. Rev., 116 , 961963.

  • Glahn, H. R., and Ruth D. P. , 2003: The new digital forecast database of the National Weather Service. Bull. Amer. Meteor. Soc., 84 , 195201.

  • Hessler, G., 1984: Experiments with statistical objective analysis techniques for representing a coastal surface temperature field. Bound.-Layer Meteor., 28 , 375389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horel, J., and Coauthors, 2002: Mesowest: Cooperative mesonets in the western United States. Bull. Amer. Meteor. Soc., 83 , 211226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ioannidou, L., and Pedder M. A. , 1999: Three-dimensional applications of a successive corrections analysis scheme to mesoscale observations. Mon. Wea. Rev., 127 , 236251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.

  • Lanzinger, A., and Steinacker R. , 1990: A fine mesh analysis scheme designed for mountainous terrain. Meteor. Atmos. Phys., 43 , 213219.

  • Lazarus, S. M., Ciliberti C. M. , Horel J. D. , and Brewster K. A. , 2002: Near-real-time applications of a mesoscale analysis system to complex terrain. Wea. Forecasting, 17 , 9711000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lönnberg, P., and Hollingsworth A. , 1986: The statistical structure of short-range forecast errors as determined from radiosonde data. Part II: The covariance of height and wind errors. Tellus, 38A , 137161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, P. A., and Benjamin S. G. , 1992: A system for the hourly assimilation of surface observations in mountainous and flat terrain. Mon. Wea. Rev., 120 , 23422359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otte, T. L., Seaman N. L. , and Stauffer D. R. , 2001: A heuristic study of the importance of anisotropic error distributions in data assimilation. Mon. Wea. Rev., 129 , 766783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedder, M. A., 1993: Interpolation and filtering of spatial observations using successive corrections and Gaussian filters. Mon. Wea. Rev., 121 , 28892902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, Y., 1971: A theoretical interpretation of anisotropically weighted smoothing on the basis of numerical variational analysis. Mon. Wea. Rev., 99 , 698707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sashegyi, K. D., Harms D. E. , Madala R. V. , and Raman S. , 1993: Application of the Bratseth scheme for the analysis of GALE data using a mesoscale model. Mon. Wea. Rev., 121 , 23312350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seaman, R. S., 1988: Some real tests of the interpolation accuracy of Bratseth’s successive correction method. Tellus, 40A , 173176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R., and Coauthors, 1997: Local and remote effects of mountains on weather: Research needs and opportunities. Bull. Amer. Meteor. Soc., 78 , 877892.

    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., and Seaman N. L. , 1994: Multiscale four-dimensional data assimilation. J. Appl. Meteor., 33 , 416434.

  • Thiebaux, H. J., 1976: Anisotropic correlation functions for objective analysis. Mon. Wea. Rev., 104 , 9941002.

  • Thiebaux, H. J., 1977: Extending estimation accuracy with anisotropic interpolation. Mon. Wea. Rev., 105 , 691699.

  • Xu, Q., Wei L. , Van Tuyl A. , and Barker E. H. , 2001: Estimation of three-dimensional error covariances. Part I: Analysis of height innovation vectors. Mon. Wea. Rev., 129 , 21262135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., Droegemeier K. K. , and Wong V. , 2000: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75 , 161193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76 , 143165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., Wang D. , Gao J. , Brewster K. , and Droegemeier K. K. , 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82 , 139170.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 79 55 1
PDF Downloads 12 8 0

Local Adjustment of the Background Error Correlation for Surface Analyses over Complex Terrain

View More View Less
  • 1 NOAA/Cooperative Institute for Regional Prediction, and Department of Meteorology, University of Utah, Salt Lake City, Utah
  • | 2 Florida Institute of Technology, Melbourne, Florida
Restricted access

Abstract

The terrain between grid points is used to modify locally the background error correlation matrix in an objective analysis system. This modification helps to reduce the influence across mountain barriers of corrections to the background field that are derived from surface observations. This change to the background error correlation matrix is tested using an analytic case of surface temperature that encapsulates the significant features of nocturnal radiation inversions in mountain basins, which can be difficult to analyze because of locally sharp gradients in temperature. Bratseth successive corrections, optimal interpolation, and three-dimensional variational approaches are shown to yield exactly the same surface temperature analysis. Adding the intervening terrain term to the Bratseth approach led to solutions that match more closely the specified analytic solution. In addition, the convergence of the Bratseth solutions to the best linear unbiased estimation of the analytic solution is faster.

The intervening terrain term was evaluated in objective analyses over the western United States derived from a modified version of the Advanced Regional Prediction System Data Assimilation System. Local adjustment of the background error correlation matrix led to improved surface temperature analyses by limiting the influence of observations in mountain valleys that may differ from the weather conditions present in adjacent valleys.

Corresponding author address: David T. Myrick, Dept. of Meteorology, University of Utah, 135 South 1460 East, Rm. 819, Salt Lake City, UT 84112-0110. Email: dmyrick@met.utah.edu

Abstract

The terrain between grid points is used to modify locally the background error correlation matrix in an objective analysis system. This modification helps to reduce the influence across mountain barriers of corrections to the background field that are derived from surface observations. This change to the background error correlation matrix is tested using an analytic case of surface temperature that encapsulates the significant features of nocturnal radiation inversions in mountain basins, which can be difficult to analyze because of locally sharp gradients in temperature. Bratseth successive corrections, optimal interpolation, and three-dimensional variational approaches are shown to yield exactly the same surface temperature analysis. Adding the intervening terrain term to the Bratseth approach led to solutions that match more closely the specified analytic solution. In addition, the convergence of the Bratseth solutions to the best linear unbiased estimation of the analytic solution is faster.

The intervening terrain term was evaluated in objective analyses over the western United States derived from a modified version of the Advanced Regional Prediction System Data Assimilation System. Local adjustment of the background error correlation matrix led to improved surface temperature analyses by limiting the influence of observations in mountain valleys that may differ from the weather conditions present in adjacent valleys.

Corresponding author address: David T. Myrick, Dept. of Meteorology, University of Utah, 135 South 1460 East, Rm. 819, Salt Lake City, UT 84112-0110. Email: dmyrick@met.utah.edu

Save