Ground Fog Detection from Space Based on MODIS Daytime Data—A Feasibility Study

Jörg Bendix Laboratory for Climatology and Remote Sensing, Faculty of Geography, University of Marburg, Marburg, Germany

Search for other papers by Jörg Bendix in
Current site
Google Scholar
PubMed
Close
,
Boris Thies Laboratory for Climatology and Remote Sensing, Faculty of Geography, University of Marburg, Marburg, Germany

Search for other papers by Boris Thies in
Current site
Google Scholar
PubMed
Close
,
Jan Cermak Laboratory for Climatology and Remote Sensing, Faculty of Geography, University of Marburg, Marburg, Germany

Search for other papers by Jan Cermak in
Current site
Google Scholar
PubMed
Close
, and
Thomas Nauß Laboratory for Climatology and Remote Sensing, Faculty of Geography, University of Marburg, Marburg, Germany

Search for other papers by Thomas Nauß in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The distinction made by satellite data between ground fog and low stratus is still an open problem. A proper detection scheme would need to make a determination between low stratus thickness and top height. Based on this information, stratus base height can be computed and compared with terrain height at a specific picture element. In the current paper, a procedure for making the distinction between ground fog and low-level stratus is proposed based on Moderate Resolution Imaging Spectroradiometer (MODIS, flying on board the NASA Terra and Aqua satellites) daytime data for Germany. Stratus thickness is alternatively derived from either empirical relationships or a newly developed retrieval scheme (lookup table approach), which relies on multiband albedo and radiative transfer calculations. A trispectral visible–near-infrared (VIS–NIR) approach has been proven to give the best results for the calculation of geometrical thickness. The comparison of horizontal visibility data from synoptic observing (SYNOP) stations of the German Weather Service and the results of the ground fog detection schemes reveals that the lookup table approach shows the best performance for both a valley fog situation and an extended layer of low stratus with complex local visibility structures. Even if the results are very encouraging [probability of detection (POD) = 0.76], relatively high percentage errors and false alarm ratios still occur. Uncertainties in the retrieval scheme are mostly due to possible collocation errors and known problems caused by comparing point and pixel data (time lag between satellite overpass and ground observation, etc.). A careful inspection of the pixels that mainly contribute to the false alarm ratio reveals problems with thin cirrus layers and the fog-edge position of the SYNOP stations. Validation results can be improved by removing these suspicious pixels (e.g., percentage error decreases from 28% to 22%).

Corresponding author address: Prof. Dr. Jörg Bendix, Laboratory for Climatology and Remote Sensing (LCRS), Faculty of Geography, University of Marburg, Deutschhausstr. 10, 35032 Marburg, Germany. Email: bendix@staff.uni-marburg.de

Abstract

The distinction made by satellite data between ground fog and low stratus is still an open problem. A proper detection scheme would need to make a determination between low stratus thickness and top height. Based on this information, stratus base height can be computed and compared with terrain height at a specific picture element. In the current paper, a procedure for making the distinction between ground fog and low-level stratus is proposed based on Moderate Resolution Imaging Spectroradiometer (MODIS, flying on board the NASA Terra and Aqua satellites) daytime data for Germany. Stratus thickness is alternatively derived from either empirical relationships or a newly developed retrieval scheme (lookup table approach), which relies on multiband albedo and radiative transfer calculations. A trispectral visible–near-infrared (VIS–NIR) approach has been proven to give the best results for the calculation of geometrical thickness. The comparison of horizontal visibility data from synoptic observing (SYNOP) stations of the German Weather Service and the results of the ground fog detection schemes reveals that the lookup table approach shows the best performance for both a valley fog situation and an extended layer of low stratus with complex local visibility structures. Even if the results are very encouraging [probability of detection (POD) = 0.76], relatively high percentage errors and false alarm ratios still occur. Uncertainties in the retrieval scheme are mostly due to possible collocation errors and known problems caused by comparing point and pixel data (time lag between satellite overpass and ground observation, etc.). A careful inspection of the pixels that mainly contribute to the false alarm ratio reveals problems with thin cirrus layers and the fog-edge position of the SYNOP stations. Validation results can be improved by removing these suspicious pixels (e.g., percentage error decreases from 28% to 22%).

Corresponding author address: Prof. Dr. Jörg Bendix, Laboratory for Climatology and Remote Sensing (LCRS), Faculty of Geography, University of Marburg, Deutschhausstr. 10, 35032 Marburg, Germany. Email: bendix@staff.uni-marburg.de

Save
  • Ackermann, S. A., Strabala K. I. , Menzel W. P. , Frey R. A. , Moeller C. C. , and Gumley L. E. , 1998: Discriminating clear sky from clouds with MODIS. J. Geophys. Res., 103 , 3214132157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allam, R., 1987: The detection of fog from satellites. Preprints, Workshop on Satellite and Radar Imagery Interpretation, Reading, United Kingdom, Meteorological Office College, 495–505.

  • Anthis, A. I., and Cracknell A. P. , 1999: Use of satellite images for fog detection (AVHRR) and forecast of fog dissipation (METEOSAT) over lowland Thessalia, Hellas. Int. J. Remote Sens., 20 , 11071124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bankert, R. L., Hadjimichael M. , Kuciauskas A. P. , Thompson W. T. , and Richardson K. , 2004: Remote cloud ceiling assessment using data-mining methods. J. Appl. Meteor., 43 , 19291946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baum, B. B., Frey R. A. , Mace G. G. , Harkey M. K. , and Yang P. , 2003: Nighttime multilayered cloud detection using MODIS and ARM data. J. Appl. Meteor., 42 , 905919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bendix, J., 1994: Fog climatology of the Po Valley. Riv. Meteor. Aeronaut., 54 , 3–4,. 2536.

  • Bendix, J., 1995a: A case study on the determination of fog optical depth and liquid water path using AVHRR data and relations to fog liquid water content and horizontal visibility. Int. J. Remote Sens., 16 , 515530.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bendix, J., 1995b: Ground fog or low level stratus: Decision-making using AVHRR data. Proc. 1995 Meteorological Satellite Data Users’ Conf., Winchester, United Kingdom, European Organisation for the Exploitation of Meteorological Satellites, 385–392.

  • Bendix, J., 2002: A satellite-based climatology of fog and low-level stratus in Germany and adjacent areas. Atmos. Res., 64 , 318.

  • Bendix, J., 2004: Understanding of fog structure, development and forecasting, COST722. Proc. Third Int. Conf. on Fog, Fog Collection and Dew, Cape Town, South Africa, University of Pretoria, L2.1–L2.4.

  • Bendix, J., and Bachmann M. , 1991: A method for detection of fog using AVHRR imagery of NOAA satellites suitable for operational purposes (in German). Meteor. Rundsch., 43 , 169178.

    • Search Google Scholar
    • Export Citation
  • Bendix, J., and Bachmann M. , 1993: Climatology of fog layers in the Alpine region—A study based on AVHRR data. Proc. Sixth AVHRR Data Users’ Meeting, Belgirate, Italy, European Organisation for the Exploitation of Meteorological Satellites, 237–243.

  • Bendix, J., Reudenbach C. , and Rollenbeck R. , 2003: The Marburg Satellite Station. Proc. 2002 Meteorological Satellite Users’ Conf., Dublin, Ireland, European Organisation for the Exploitation of Meteorological Satellites, 139–146.

  • Bendix, J., Thies B. , and Cermak J. , 2004a: Fog detection with TERRA-MODIS and MSG-SEVIRI. Proc. 2003 Meteorological Satellite Data Users’ Conf., Weimar, Germany, European Organisation for the Exploitation of Meteorological Satellites, 429–435.

  • Bendix, J., Thies B. , and Cermak J. , 2004b: New perspectives in remote sensing of fog and low stratus—TERRA/AQUA-MODIS and MSG. Proc. Third Int. Conf. on Fog, Fog Collection and Dew, Cape Town, South Africa, University of Pretoria, G2.1–G2.4.

  • Boers, R., Jensen J. B. , Krummel P. B. , and Gerber H. , 1996: Microphysical and short-wave structure of wintertime stratocumulus clouds over the Southern Ocean. Quart. J. Roy. Meteor. Soc., 122 , 13071339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J. L., 1991: Parameterization of the condensation process: A theoretical approach. J. Atmos. Sci., 48 , 264282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J. L., Pawlowska H. , Schüller L. , Preusker R. , Fischer J. , and Fouquart Y. , 2000: Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration. J. Atmos. Sci., 57 , 803821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, F-L., and Li Z. , 2002: Estimating the vertical variation of cloud droplet effective radius using multispectral near-infrared satellite measurements. J. Geophys. Res., 107 .4257, doi:10.1029/2001JD000766.

    • Search Google Scholar
    • Export Citation
  • Chang, F-L., and Li Z. , 2003: Retrieving vertical profiles of water-cloud droplet effective radius: Algorithm modification and preliminary application. J. Geophys. Res., 108 .4763, doi:10.1029/2003JD003906.

    • Search Google Scholar
    • Export Citation
  • Chang, F-L., Li Z. , and Dong X. , 2002: A bi-spectral near-infrared method for inferring the vertical variation of cloud droplet effective radius. Preprints, 11th Conf. on Cloud Physics, Ogden, UT, Amer. Meteor. Soc., CD-ROM, JP1.8.

  • Chorley, R. J., and Haggett P. , 1965: Trend surface mapping in geographical research. Trans. Inst. Brit. Geogr., 37 , 4767.

  • Chourlaton, T. W., Fullarton G. , Lathamm J. , Mill C. S. , Smith M. , and Stromberg I. M. , 1981: A field study of radiation fog in Meppen, West Germany. Quart. J. Roy. Meteor. Soc., 107 , 381394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dybbroe, A., 1993: Automatic detection of fog at night using AVHRR data. Proc. Sixth AVHRR Data Users’ Meeting, Belgirate, Italy, European Organisation for the Exploitation of Meteorological Satellites, 245–252.

  • Dyras, I., 2000: The feasability of 1.6-μm channel on NOAA-15 use for operational fog detection. Proc. 2000 Meteorological Satellite Data Users’ Conf., Bologna, Italy, European Organisation for the Exploitation of Meteorological Satellites, 640–647.

  • Ellrod, G. P., 1995: Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery. Wea. Forecasting, 10 , 606619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., 2002: Estimation of low cloud base height at night from satellite infrared and surface temperature data. Natl. Wea. Dig., 26 , 3944.

    • Search Google Scholar
    • Export Citation
  • Eyre, J. R., Brownscombe J. L. , and Allam R. J. , 1984: Detection of fog at night using Advanced Very High Resolution Radiometer. Meteor. Mag., 113 , 266271.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., and Grassl H. , 1991: Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 1: Theoretical study. J. Appl. Meteor., 30 , 12451259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forkel, R., 1986: A two-dimensional numerical model for fog prognosis (in German). Ph.D. thesis, University of Mainz, Mainz, Germany, 122 pp.

  • Forsythe, J. M., Vonder Haar T. H. , and Reineke D. L. , 2000: Cloud-base height estimates using a combination of meteorological satellite imagery and surface reports. J. Appl. Meteor., 39 , 23362347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenwald, T. J., and Christopher S. A. , 2000: The GOES I-M imagers: New tools for studying microphysical properties of boundary layer stratiform clouds. Bull. Amer. Meteor. Soc., 81 , 26072619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Güls, I., and Bendix J. , 1996: Fog detection and fog mapping using low cost Meteosat-WEFAX transmission. Meteor. Appl., 3 , 179187.

  • Harshvardhan, and Guo, G., Green R. N. , Qu Z. , and Nakajima T. Y. , 2004: Remotely sensed microphysical and thermodynamic properties of nonuniform water cloud fields. J. Atmos. Sci., 61 , 25742587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., and Stephens G. L. , 2000: Molecular line absorption in a scattering atmosphere. Part II: Application to remote sensing in the 02 A band. J. Atmos. Sci., 57 , 16151634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y. X., and Stamnes K. , 1993: An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J. Climate, 6 , 728742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hutchison, K. D., 2002: The retrieval of cloud base heights from MODIS and three-dimensional cloud fields from NASA’s EOS Aqua mission. Int. J. Remote Sens., 23 , 52495265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, W., Nietosvaara V. , Michaelides S. C. , and Gmoser H. , and Ed., 2005: COST Action 722—Short-range forecasting methods of fog and low clouds. EUR 21451, Office for Publication of the European Communities, 201 pp.

  • Kawamoto, K., Nakajima T. , and Nakajima T. Y. , 2001: A global determination of cloud microphysics with AVHRR remote sensing. J. Climate, 14 , 20542068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M. D., Kaufman Y. J. , Menzel W. P. , and Tanré D. , 1992: Remote sensing of cloud, aerosol and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS). IEEE Trans. Geosci. Remote Sens., 16 , 227.

    • Search Google Scholar
    • Export Citation
  • Kraus, H., and Ebel U. , 1989: Atmospheric boundary layer characteristics in severe smog episodes. Meteor. Atmos. Phys., 40 , 211224.

  • Lee, T. F., Turk F. J. , and Richardson K. , 1997: Stratus and fog products using GOES-8–9 3.9-μm data. Wea. Forecasting, 12 , 664677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, X., and Coakley J. A. Jr., 1993: Retrieval of properties for semitransparent clouds from multispectral infrared imagery data. J. Geophys. Res., 98 , 1850118514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumia, R., Shapiro L. , and Zuniga O. , 1983: A new connected components algorithm for virtual memory computers. Comput. Vision, Graphics, Image Process., 22 , 287300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzban, C., 2004: The ROC curve and the area under it as performance measures. Wea. Forecasting, 19 , 11061114.

  • Miles, N. L., Verlinde J. , and Clothiaux E. E. , 2000: Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci., 57 , 295311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., Heck P. W. , Young D. F. , Fairall C. W. , and Snider J. B. , 1992: Stratocumulus cloud properties from simultaneous satellite and island-based instrumentation during FIRE. J. Appl. Meteor., 31 , 317339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakajima, T. Y., and Nakajima T. , 1995: Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions. J. Atmos. Sci., 52 , 40434059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nasiri, S. L., and Baum B. B. , 2004: Daytime multilayered cloud detection using multispectral imager data. J. Atmos. Oceanic Technol., 21 , 11451155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nauß, T., and Bendix J. , 2005: An operational MODIS processing scheme for PC dedicated to direct broadcasting applications in meteorology and earth sciences. Comput. Geosci., 31 , 804808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nauß, T., Wagner M. , and Bendix J. , 2004: Operational retrieval of microphysical properties for day- and night-time MSG/MODIS data. Proc. 2003 Meteorological Satellite Data Users’ Conf., Weimar, Germany, European Organisation for the Exploitation of Meteorological Satellites, 281–285.

  • Nauß, T., Kokhanovsky A. A. , Nakajima T. Y. , Reudenbach C. , and Bendix J. , 2005: The intercomparison of selected cloud retrieval algorithms. Atmos. Res., in press.

    • Search Google Scholar
    • Export Citation
  • Pilewskie, P., and Twomey S. , 1987: Cloud phase discrimination by reflectance measurements near 1.6 and 2.2 μm. J. Atmos. Sci., 44 , 34193421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinnick, R. G., Hoihjelle D. L. , Fernandez G. , Stenmark E. B. , Lindberg J. D. , Hoidale G. B. , and Jennings S. G. , 1978: Vertical structure in atmospheric fog and haze and its effect on visibility and infrared extinction. J. Atmos. Sci., 35 , 20202032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., 2000: Vertical photon transport in cloud remote sensing problems. J. Geophys. Res., 105 , 2291922935.

  • Platnick, S., King M. D. , Ackerman S. A. , Menzel W. P. , Baum B. A. , Rèdi J. C. , and Frey R. A. , 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41 , 459473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reudenbach, C., and Bendix J. , 1998: Experiments with a straightforward model for the spatial forecast of fog/low stratus clearance based on multi-source data. Meteor. Appl., 5 , 205216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roth, R., 1987: Regional wind systems over the north-German basin (in German). Promet, 3–4 , 2835.

  • Saunders, R. W., 1988: Cloud-top temperature/height: A high-resolution imagery product from AVHRR data. Meteor. Mag., 117 , 211221.

  • Stephens, G. L., Ackermann S. , and Smith E. A. , 1984: A shortwave parameterization to improve cloud absorption. J. Atmos. Sci., 41 , 687690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steward, D. A., and Essenwanger O. M. , 1982: A survey of fog and related optical propagation characteristics. Rev. Geophys. Space Phys., 20 , 481495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tampieri, F., and Tomasi C. , 1976: Size distribution models of fog and cloud droplets in terms of the modified gamma function. Tellus, 28 , 333347.

    • Search Google Scholar
    • Export Citation
  • Turner, J., Allam R. J. , and Maine D. R. , 1986: A case study of the detection of fog at night using channel 3 and 4 on the Advanced Very High Resolution Radiometer (AVHRR). Meteor. Mag., 115 , 285290.

    • Search Google Scholar
    • Export Citation
  • Underwood, S. J., Ellrod G. P. , and Kuhnert A. L. , 2004: A multiple-case analysis of nocturnal radiation-fog development of California utilizing GOES nighttime fog product. J. Appl. Meteor., 43 , 297311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wetzel, M. A., Borys R. D. , and Xu L. E. , 1996: Satellite microphysical retrievals for land-based fog with validation by balloon profiling. J. Appl. Meteor., 35 , 810829.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1007 360 16
PDF Downloads 780 267 17