Improving Tropical Cyclogenesis Statistical Model Forecasts through the Application of a Neural Network Classifier

Christopher C. Hennon Department of Atmospheric Sciences, University of North Carolina—Asheville, Asheville, North Carolina

Search for other papers by Christopher C. Hennon in
Current site
Google Scholar
PubMed
Close
,
Caren Marzban Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma, and Department of Statistics and Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Caren Marzban in
Current site
Google Scholar
PubMed
Close
, and
Jay S. Hobgood Department of Geography, The Ohio State University, Columbus, Ohio

Search for other papers by Jay S. Hobgood in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A binary neural network classifier is evaluated against linear discriminant analysis within the framework of a statistical model for forecasting tropical cyclogenesis (TCG). A dataset consisting of potential developing cloud clusters that formed during the 1998–2001 Atlantic hurricane seasons is used in conjunction with eight large-scale predictors of TCG. Each predictor value is calculated at analysis time. The model yields 6–48-h probability forecasts for genesis at 6-h intervals. Results consistently show that the neural network classifier performs comparably to or better than linear discriminant analysis on all performance measures examined, including probability of detection, Heidke skill score, and forecast reliability. Two case studies are presented to investigate model performance and the feasibility of adapting the model to operational forecast use.

Corresponding author address: Christopher C. Hennon, Dept. of Atmospheric Sciences, CPO 2450, University of North Carolina—Asheville, 1 University Heights, Asheville, NC 28804. Email: chennon@unca.edu

Abstract

A binary neural network classifier is evaluated against linear discriminant analysis within the framework of a statistical model for forecasting tropical cyclogenesis (TCG). A dataset consisting of potential developing cloud clusters that formed during the 1998–2001 Atlantic hurricane seasons is used in conjunction with eight large-scale predictors of TCG. Each predictor value is calculated at analysis time. The model yields 6–48-h probability forecasts for genesis at 6-h intervals. Results consistently show that the neural network classifier performs comparably to or better than linear discriminant analysis on all performance measures examined, including probability of detection, Heidke skill score, and forecast reliability. Two case studies are presented to investigate model performance and the feasibility of adapting the model to operational forecast use.

Corresponding author address: Christopher C. Hennon, Dept. of Atmospheric Sciences, CPO 2450, University of North Carolina—Asheville, 1 University Heights, Asheville, NC 28804. Email: chennon@unca.edu

Save
  • Avila, L. A., Pasch R. J. , and Jiing J-G. , 2000: Atlantic tropical systems of 1996 and 1997: Years of contrasts. Mon. Wea. Rev., 128 , 36953706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bankert, R. L., 1994: Cloud classification of AVHRR imagery in maritime regions using a probabilistic neural network. J. Appl. Meteor., 33 , 909918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, C. M., 1995: Neural Networks for Pattern Recognition. Clarendon Press, 482 pp.

  • Bister, M., and Emanuel K. A. , 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125 , 26622682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and Velden C. S. , 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85 , 353365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46 , 25992620.

  • Franklin, J. L., Avila L. A. , Beven J. L. , Lawrence M. B. , Pasch R. J. , and Stewart S. R. , 2001: Atlantic hurricane season of 2000. Mon. Wea. Rev., 129 , 30373056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hennon, C. C., and Hobgood J. S. , 2003: Forecasting tropical cyclogenesis over the Atlantic basin using large-scale data. Mon. Wea. Rev., 131 , 29272940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54 , 25192540.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kolenda, T., Sigurdsson S. , Winther O. , Hansen L. K. , and Larsen J. , cited. 2000: DTU: Toolbox. ISP Group, Institute of Informatics and Mathematical Modelling, Technical University of Denmark. [Available online at http://mole.imm.dtu.dk/toolbox/.].

  • Marzban, C., 1998: Scalar measures of performance in rare-event situations. Wea. Forecasting, 13 , 753763.

  • Marzban, C., 2003: A neural network for postprocessing model output: ARPS. Mon. Wea. Rev., 131 , 11031111.

  • Marzban, C., and Stumpf G. J. , 1996: A neural network for tornado prediction based on Doppler radar-derived attributes. J. Appl. Meteor., 35 , 617626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and Zehr R. , 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38 , 11321151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLachlan, G. J., 1992: Discriminant Analysis and Statistical Pattern Recognition. John Wiley and Sons, 526 pp.

  • Montgomery, M. T., and Enaganio J. , 1998: Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasigeostrophic model. J. Atmos. Sci., 55 , 31763207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1992: Diagnostic verification of probability forecasts. Int. J. Forecasting, 7 , 435455.

  • Murphy, A. H., and Winkler R. L. , 1987: A general framework for forecast verification. Mon. Wea. Rev., 115 , 13301338.

  • Pasch, R. J., Avila L. A. , and Guiney J. L. , 2001: Atlantic hurricane season of 1998. Mon. Wea. Rev., 129 , 30853123.

  • Pasch, R. J., Jiing J-G. , Horsfall F. M. , Pan H-L. , and Surgi N. , 2002: Forecasting tropical cyclogenesis in the NCEP global model. Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 178–179.

  • Richard, M. D., and Lippman R. P. , 1991: Neural network classifiers estimate Bayesian a posteriori probabilities. Neural Comput., 3 , 461483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and Holland G. J. , 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125 , 13771396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, E., Olsen W. , Halverson J. , Simpson J. , and Pierce H. , 2000: Environmental forcing of Supertyphoon Paka’s (1997) latent heat structure. J. Appl. Meteor., 39 , 19832006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., Ritchie E. A. , Holland G. J. , Halverson J. , and Stewart S. R. , 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125 , 26432661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 174 85 4
PDF Downloads 244 39 3