Mountain Wave–Induced Polar Stratospheric Cloud Forecasts for Aircraft Science Flights during SOLVE/THESEO 2000

Stephen D. Eckermann E. O. Hulburt Center for Space Research, Naval Research Laboratory, Washington, DC

Search for other papers by Stephen D. Eckermann in
Current site
Google Scholar
PubMed
Close
,
Andreas Dörnbrack DLR, Oberpfaffenhofen, Germany

Search for other papers by Andreas Dörnbrack in
Current site
Google Scholar
PubMed
Close
,
Harald Flentje DLR, Oberpfaffenhofen, Germany

Search for other papers by Harald Flentje in
Current site
Google Scholar
PubMed
Close
,
Simon B. Vosper Met Office, Exeter, United Kingdom

Search for other papers by Simon B. Vosper in
Current site
Google Scholar
PubMed
Close
,
M. J. Mahoney Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by M. J. Mahoney in
Current site
Google Scholar
PubMed
Close
,
T. Paul Bui Atmospheric Chemistry and Dynamics Branch, NASA Ames Research Center, Moffett Field, California

Search for other papers by T. Paul Bui in
Current site
Google Scholar
PubMed
Close
, and
Kenneth S. Carslaw School of the Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Kenneth S. Carslaw in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The results of a multimodel forecasting effort to predict mountain wave–induced polar stratospheric clouds (PSCs) for airborne science during the third Stratospheric Aerosol and Gas Experiment (SAGE III) Ozone Loss and Validation Experiment (SOLVE)/Third European Stratospheric Experiment on Ozone (THESEO 2000) Arctic ozone campaign are assessed. The focus is on forecasts for five flights of NASA's instrumented DC-8 research aircraft in which PSCs observed by onboard aerosol lidars were identified as wave related. Aircraft PSC measurements over northern Scandinavia on 25–27 January 2000 were accurately forecast by the mountain wave models several days in advance, permitting coordinated quasi-Lagrangian flights that measured their composition and structure in unprecedented detail. On 23 January 2000 mountain wave ice PSCs were forecast over eastern Greenland. Thick layers of wave-induced ice PSC were measured by DC-8 aerosol lidars in regions along the flight track where the forecasts predicted enhanced stratospheric mountain wave amplitudes. The data from these flights, which were planned using this forecast guidance, have substantially improved the overall understanding of PSC microphysics within mountain waves. Observations of PSCs south of the DC-8 flight track on 30 November 1999 are consistent with forecasts of mountain wave–induced ice clouds over southern Scandinavia, and are validated locally using radiosonde data. On the remaining two flights wavelike PSCs were reported in regions where no mountain wave PSCs were forecast. For 10 December 1999, it is shown that locally generated mountain waves could not have propagated into the stratosphere where the PSCs were observed, confirming conclusions of other recent studies. For the PSC observed on 14 January 2000 over northern Greenland, recent work indicates that nonorographic gravity waves radiated from the jet stream produced this PSC, confirming the original forecast of no mountain wave influence. This forecast is validated further by comparing with a nearby ER-2 flight segment to the south of the DC-8, which intercepted and measured local stratospheric mountain waves with properties similar to those predicted. In total, the original forecast guidance proves to be consistent with PSC data acquired from all five of these DC-8 flights. The work discussed herein highlights areas where improvements can be made in future wave PSC forecasting campaigns, such as use of anelastic rather than Boussinesq linearized gridpoint models and a need to forecast stratospheric gravity waves from sources other than mountains.

Corresponding author address: Stephen D. Eckermann, E. O. Hulburt Center for Space Research, Code 7646, Naval Research Laboratory, Washington, DC 20375. Email: stephen.eckermann@nrl.navy.mil

Abstract

The results of a multimodel forecasting effort to predict mountain wave–induced polar stratospheric clouds (PSCs) for airborne science during the third Stratospheric Aerosol and Gas Experiment (SAGE III) Ozone Loss and Validation Experiment (SOLVE)/Third European Stratospheric Experiment on Ozone (THESEO 2000) Arctic ozone campaign are assessed. The focus is on forecasts for five flights of NASA's instrumented DC-8 research aircraft in which PSCs observed by onboard aerosol lidars were identified as wave related. Aircraft PSC measurements over northern Scandinavia on 25–27 January 2000 were accurately forecast by the mountain wave models several days in advance, permitting coordinated quasi-Lagrangian flights that measured their composition and structure in unprecedented detail. On 23 January 2000 mountain wave ice PSCs were forecast over eastern Greenland. Thick layers of wave-induced ice PSC were measured by DC-8 aerosol lidars in regions along the flight track where the forecasts predicted enhanced stratospheric mountain wave amplitudes. The data from these flights, which were planned using this forecast guidance, have substantially improved the overall understanding of PSC microphysics within mountain waves. Observations of PSCs south of the DC-8 flight track on 30 November 1999 are consistent with forecasts of mountain wave–induced ice clouds over southern Scandinavia, and are validated locally using radiosonde data. On the remaining two flights wavelike PSCs were reported in regions where no mountain wave PSCs were forecast. For 10 December 1999, it is shown that locally generated mountain waves could not have propagated into the stratosphere where the PSCs were observed, confirming conclusions of other recent studies. For the PSC observed on 14 January 2000 over northern Greenland, recent work indicates that nonorographic gravity waves radiated from the jet stream produced this PSC, confirming the original forecast of no mountain wave influence. This forecast is validated further by comparing with a nearby ER-2 flight segment to the south of the DC-8, which intercepted and measured local stratospheric mountain waves with properties similar to those predicted. In total, the original forecast guidance proves to be consistent with PSC data acquired from all five of these DC-8 flights. The work discussed herein highlights areas where improvements can be made in future wave PSC forecasting campaigns, such as use of anelastic rather than Boussinesq linearized gridpoint models and a need to forecast stratospheric gravity waves from sources other than mountains.

Corresponding author address: Stephen D. Eckermann, E. O. Hulburt Center for Space Research, Code 7646, Naval Research Laboratory, Washington, DC 20375. Email: stephen.eckermann@nrl.navy.mil

Save
  • Austin, J., and Coauthors, 2003: Uncertainties and assessments of chemistry–climate models of the stratosphere. Atmos. Chem. Phys., 3 , 127.

  • Bacmeister, J. T., Newman P. A. , Gary B. L. , and Chan K. R. , 1994: An algorithm for forecasting mountain wave–related turbulence in the stratosphere. Wea. Forecasting, 9 , 241253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., Eckermann S. D. , Newman P. A. , Lait L. , Chan K. R. , Loewenstein M. , Proffitt M. H. , and Gary B. L. , 1996: Stratospheric horizontal wavenumber spectra of winds, potential temperature and atmospheric tracers observed by high-altitude aircraft. J. Geophys. Res., 101 , 94419470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, E., 1992: Design of the navy's multivariate optimum interpolation analysis system. Wea. Forecasting, 7 , 220231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, G., Müller R. , McKenna D. S. , Rex M. , and Carslaw K. S. , 1998: Ozone loss rates in the Arctic stratosphere in the winter 1991/1992: Model calculations compared with match results. Geophys. Res. Lett., 25 , 43254328. Correction. 26 , 327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broutman, D., Rottman J. W. , and Eckermann S. D. , 2001: A hybrid method for analyzing wave propagation from a localized source, with application to mountain waves. Quart. J. Roy. Meteor. Soc., 127 , 129146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broutman, D., Rottman J. W. , and Eckermann S. D. , 2003: A simplified Fourier method for nonhydrostatic mountain waves. J. Atmos. Sci., 60 , 26862696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buss, S., Hertzog A. , Hostetler C. , Bui T. P. , Lüthi D. , and Wernli H. , 2004: Analysis of a jet stream induced gravity wave associated with an observed stratospheric ice cloud over Greenland. Atmos. Chem. Phys., 4 , 11831200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caplan, P., and Pan H-L. , 2000: Changes to the 1999 NCEP operational MRF/AVN global analysis/forecast system. National Weather Service Technical Procedures Bull. 452, 15 pp. [Available online at http://www.nws.noaa.gov/om/tpb/indexb.htm.].

  • Cariolle, D., Müller S. , Cayla F. , and McCormick M. P. , 1989: Mountain waves, polar stratospheric clouds, and the ozone depletion over Antarctica. J. Geophys. Res., 94 , 1123311240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carslaw, K. S., and Coauthors, 1998a: Increased stratospheric ozone depletion due to mountain-induced atmospheric waves. Nature, 391 , 675678.

  • Carslaw, K. S., and Coauthors, 1998b: Particle microphysics and chemistry in remotely observed mountain polar stratospheric clouds. J. Geophys. Res., 103 , 57855796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carslaw, K. S., Peter T. , Bacmeister J. T. , and Eckermann S. D. , 1999: Widespread solid particle formation by mountain waves in the Arctic stratosphere. J. Geophys. Res., 104 , 18271836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chipperfield, M. P., and Jones R. L. , 1999: Relative influences of atmospheric chemistry and transport on Arctic ozone levels. Nature, 400 , 551554.

  • Davies, L. A., and Brown A. R. , 2001: Assessment of which scales of orography can be credibly resolved in a numerical model. Quart. J. Roy. Meteor. Soc., 127 , 12251237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Todling R. , 2000: Data assimilation in the presence of forecast bias: The GEOS moisture analysis. Mon. Wea. Rev., 128 , 32693282.

    • Search Google Scholar
    • Export Citation
  • Denning, R. F., Guidero S. L. , Parks G. S. , and Gary B. L. , 1989: Instrument description of the airborne Microwave Temperature Profiler. J. Geophys. Res., 94 , 1675716765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derber, J., and Coauthors, 1998: Changes to the 1998 NCEP operational MRF model analysis/forecast system. National Weather Service Technical Procedures Bull. 449, 37 pp. [Available online at http://www.nws.noaa.gov/om/tpb/indexb.htm.].

  • Dörnbrack, A., Leutbecher M. , Volkert H. , and Wirth M. , 1998: Mesoscale forecasts of stratospheric mountain waves. Meteor. Appl., 5 , 117126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., Birner T. , Fix A. , Flentje H. , Meister A. , Schmid H. , Browell E. V. , and Mahoney M. J. , 2002: Evidence for inertia gravity waves forming polar stratospheric clouds over Scandinavia. J. Geophys. Res., 107 .8287, doi:10.1029/2001JD000452.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121 , 14931513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutton, J. A., and Fichtl G. H. , 1969: Approximate equations of motion for liquids and gases. J. Atmos. Sci., 26 , 241254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., 2002: Climatology of mountain wave-induced turbulence in the stratosphere over Central Asia: October–December 1994–2001. Naval Research Laboratory Tech. Memo. NRL/MR/7640-02-8594, 52 pp.

    • Crossref
    • Export Citation
  • Eckermann, S. D., and Preusse P. , 1999: Global measurements of stratospheric mountain waves from space. Science, 286 , 15341537.

  • Eckermann, S. D., Broutman D. , and Bacmeister J. T. , 2000: Aircraft encounters with mountain wave-induced clear air turbulence: Hindcasts and operational forecasts using an improved global model. Preprints, Ninth Conf. on Aviation, Range, and Aerospace Meteorology, Orlando, FL, Amer. Meteor. Soc., 456–459.

  • Eckermann, S. D., Ma J. , and Broutman D. , 2004: The NRL Mountain Wave Forecast Model (MWFM). Preprints, Symp. on the 50th Anniversary of Operational Numerical Weather Prediction, University of Maryland, College Park, MD, Amer. Meteor. Soc., P2.9. [Available online at http://uap-www.nrl.navy.mil/dynamics/papers/Eckermann_P2.9-reprint.pdf].

  • Edouard, S., Legras B. , Lefévre F. , and Eymard R. , 1996: The effect of small-scale inhomogeneities on ozone depletion in the Arctic. Nature, 384 , 444447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flentje, H., Renger W. , Wirth M. , and Lahoz W. A. , 2000: Validation of contour advection simulations with airborne lidar measurements of filaments during the Second European Stratospheric Arctic and Midlatitude Experiment (SESAME). J. Geophys. Res., 105 , 1541715437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and Rastogi P. K. , 1985: Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere. Radio Sci., 20 , 12471277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., and Coauthors, 2003: Detailed modeling of mountain wave PSCs. Atmos. Chem. Phys., 3 , 697712.

  • Gjevik, B., and Marthinsen T. , 1978: Three-dimensional lee-wave pattern. Quart. J. Roy. Meteor. Soc., 104 , 947957.

  • Grell, G. A., Dudhia J. , and Stauffer D. R. , 1994: A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Note 398, 121 pp.

  • Hanson, D., and Mauersberger K. , 1988: Laboratory studies of the nitric acid trihydrate: Implications for the South Pole stratosphere. Geophys. Res. Lett., 15 , 855858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hertzog, A., Vial F. , Dörnbrack A. , Eckermann S. D. , Knudsen B. M. , and Pommereau J-P. , 2002: In-situ observations of gravity waves and comparisons with numerical simulations during the SOLVE/THESEO 2000 campaign. J. Geophys. Res., 107 .8292, doi:10.1029/2001JD001025.

    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., Buker M. L. , Tripoli G. J. , Browell E. V. , Grant W. B. , Hostetler C. , McGee T. J. , and Burris J. F. , 2003: Nonorographic generation of Arctic polar stratospheric clouds during December 1999. J. Geophys. Res., 108 .8325, doi:10.1029/2001JD001034.

    • Search Google Scholar
    • Export Citation
  • Hogan, T. F., and Rosmond T. , 1991: The description of the Navy Operational Global Atmospheric Prediction System's spectral forecast model. Mon. Wea. Rev., 119 , 17861815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hood, L. L., Soukharev B. E. , Fromm M. , and McCormack J. P. , 2001: Origin of extreme ozone minima at middle to high northern latitudes. J. Geophys. Res., 106 , 2092520940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, R-M., and Coauthors, 2002: Microphysical properties of wave polar stratospheric clouds retrieved from lidar measurements during SOLVE/THESEO 2000. J. Geophys. Res., 107 .8294, doi:10.1029/2001JD001125.

    • Search Google Scholar
    • Export Citation
  • Jacob, D. J., and Coauthors, 2003: Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission: Design, execution, and first results. J. Geophys. Res., 108 .9000, doi:10.1029/2002JD003276.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., and Coauthors, 2000: The IFS cycle CY21r4 made operational in October 1999. ECMWF Newsletter, Vol. 87, European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom, 2–9. [Available online at http://www.ecmwf.int/publications/newsletters/list.html.].

  • Jiang, J. H., Eckermann S. D. , Wu D. L. , and Ma J. , 2004: A search for mountain waves in MLS stratospheric limb radiances from the winter Northern Hemisphere: Data analysis and global mountain wave modeling. J. Geophys. Res., 109 .D03107, doi:10.1029/2003JD003974.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., 1988: Description of the NMC Global Data Assimilation and Forecast System. Wea. Forecasting, 4 , 335342.

  • Knudsen, B. M., Pommereau J-P. , Garnier A. , Nunes-Pinharanda M. , Denis L. , Newman P. , Letrenne G. , and Durand M. , 2002: Accuracy of analyzed stratospheric temperatures in the winter Arctic vortex from infrared Montgolfier long-duration balloon flights, 2, Results. J. Geophys. Res., 107 .4316, doi:10.1029/2001JD001329.

    • Search Google Scholar
    • Export Citation
  • Lahoz, W. A., 1999: Predictive skill of the UKMO Unified Model in the lower stratosphere. Quart. J. Roy. Meteor. Soc., 125 , 22052238.

  • Lander, J., and Hoskins B. J. , 1997: Believable scales and parameterizations in a spectral transform model. Mon. Wea. Rev., 125 , 292303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane, T. P., Reeder M. J. , Morton B. R. , and Clark T. L. , 2000: Observations and numerical modeling of mountain waves over the Southern Alps of New Zealand. Quart. J. Roy. Meteor. Soc., 126 , 27652788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, A. M., Carver G. D. , Chipperfield M. P. , and Pyle J. A. , 1997: Three-dimensional chemical forecasting: A methodology. J. Geophys. Res., 102 , 39053919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., and Volkert H. , 2000: The propagation of mountain waves into the stratosphere: Quantitative evaluation of three-dimensional simulations. J. Atmos. Sci., 57 , 30903108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lipps, F. B., and Hemler R. S. , 1982: A scale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci., 39 , 21922210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, B. P., Voigt C. , Fueglistaler S. , and Peter T. , 2003: Extreme NAT supersaturations in mountain wave ice PSCs: A clue to NAT formation. J. Geophys. Res., 108 .4441, doi:10.1029/2002JD003104.

    • Search Google Scholar
    • Export Citation
  • Lutman, E. R., Pyle J. A. , Chipperfield M. P. , Lary D. J. , Kilbane-Dawe J. , Waters J. W. , and Larsen N. , 1997: Three-dimensional studies of the 1991/1992 Northern Hemisphere winter using domain-filling trajectories with chemistry. J. Geophys. Res., 102 , 14791488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manney, G. L., Sabutis J. L. , Pawson S. , Santee M. L. , Naujokat B. , Swinbank R. , Gelman M. E. , and Ebisuzaki W. , 2003: Lower stratospheric temperature differences between meteorological analyses in two cold Arctic winters and their impact on polar processing studies. J. Geophys. Res., 108 .8328, doi:10.1029/2001JD001149.

    • Search Google Scholar
    • Export Citation
  • Marks, C. J., and Eckermann S. D. , 1995: A three-dimensional nonhydrostatic ray-tracing model for gravity waves: Formulation and preliminary results for the middle atmosphere. J. Atmos. Sci., 52 , 19591984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marti, J., and Mauersberger K. , 1993: A survey and new measurements of ice vapor-pressure at temperatures between 170 and 250 K. Geophys. Res. Lett., 20 , 363366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCormack, J. P., and Coauthors, 2004: NOGAPS-ALPHA model simulations of stratospheric ozone during the SOLVE2 campaign. Atmos. Chem. Phys., 4 , 24012423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nance, L. B., 1997: On the inclusion of compressibility effects in the Scorer parameter. J. Atmos. Sci., 54 , 362367.

  • Nance, L. B., and Durran D. R. , 1994: A comparison of the accuracy of three anelastic systems and the pseudo-incompressible system. J. Atmos. Sci., 51 , 35493565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, P. A., and Nash E. R. , 2000: Quantifying the wave driving of the stratosphere. J. Geophys. Res., 105 , 1248512498.

  • Newman, P. A., and Coauthors, 1996: Measurements of polar vortex air in the midlatitudes. J. Geophys. Res., 101 , 1287912892.

  • Newman, P. A., Fahey D. W. , Brune W. H. , Kurylo M. J. , and Kawa S. R. , 1999: Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS): Preface. J. Geophys. Res., 104 , 2648126495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, P. A., Nash E. R. , and Rosenfield J. E. , 2001: What controls the temperature of the Arctic stratosphere during spring? J. Geophys. Res., 106 , 1999920010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, P. A., and Coauthors, 2002: An overview of the SOLVE/THESEO 2000 campaign. J. Geophys. Res., 107 .8259, doi:10.1029/2001JD001303.

    • Search Google Scholar
    • Export Citation
  • Pagan, K. L., Tabazadeh A. , Drdla K. , Hervig M. E. , Eckermann S. D. , Browell E. V. , Legg M. J. , and Foschi P. G. , 2004: Observational evidence against mountain-wave generation of ice nuclei as a prerequisite for the formation of three NAT PSCs observed in the Arctic in early December 1999. J. Geophys. Res., 109 .D04312, doi:10.1029/2003JD003846.

    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and Derber J. C. , 1992: The National Meteorological Center's spectral statistical-interpolation analysis scheme. Mon. Wea. Rev., 120 , 17471763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawson, S., and Naujokat B. , 1999: The cold winters of the middle 1990s in the northern lower stratosphere. J. Geophys. Res., 104 , 1420914222.

  • Pyle, J. A., and Harris N. R. P. , 1995: Lessons for the future from coordinated European stratospheric campaigns. Phys. Chem. Earth, 20 , 512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and Wu F. , 1999: Cooling of the Arctic and Antarctic polar stratospheres due to ozone depletion. J. Climate, 12 , 14671479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sawyer, J. S., 1962: Gravity waves in the atmosphere as a three-dimensional problem. Quart. J. Roy. Meteor. Soc., 88 , 412425.

  • Schoeberl, M. R., 1985: The penetration of mountain waves into the middle atmosphere. J. Atmos. Sci., 42 , 28562864.

  • Schulz, A., and Coauthors, 2001: Arctic ozone loss in threshold conditions: MATCH observations in 1997/1998 and 1998/1999. J. Geophys. Res., 106 , 74957503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, S. G., Bui T. P. , Chan K. R. , and Bowen S. W. , 1990: The meteorological measurement system on the NASA ER-2 aircraft. J. Atmos. Oceanic Technol., 7 , 525540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2000: The middle atmosphere. J. Atmos. Sol. Terr. Phys., 62 , 15871601.

  • Shutts, G. J., 1998: Stationary gravity-wave structure in flows with directional wind shear. Quart. J. Roy. Meteor. Soc., 124 , 14211442.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132 , 30193032.

  • Skeie, P., and Grønås S. , 2000: Strongly stratified easterly flows across Spitzbergen. Tellus, 52A , 473486.

  • Solomon, S., 1999: Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys., 37 , 275316.

  • Sparling, L. C., Douglass A. R. , and Schoeberl M. R. , 1998: An estimate of the effect of unresolved structure on modeled ozone loss from aircraft observations of CIO. Geophys. Res. Lett., 25 , 305308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stefanutti, L., MacKenzie A. R. , Balestri S. , Khattatov V. , Fiocco G. , Kyro E. , and Peter T. , 1999a: Airborne Polar Experiment/Polar Ozone, Lee-waves, Chemistry and Transport (APE/POLECAT): Rationale, road map and summary of measurements. J. Geophys. Res., 104 , 2394123959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stefanutti, L., Sokolov L. , Balestri S. , MacKenzie A. R. , and Khattatov V. , 1999b: The M-55 Geophysica as a platform for the Airborne Polar Experiment. J. Atmos. Oceanic Technol., 16 , 13031312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svendsen, S. H., Larsen N. , Knudsen B. , Eckermann S. D. , and Browell E. V. , 2005: Influence of mountain waves and NAT nucleation mechanisms on polar stratospheric cloud formation at local and synoptic scales during the 1999–2000 Arctic winter. Atmos. Chem. Phys., 5 , 739753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swinbank, R., Orris R. L. , and Wu D. L. , 1999: Stratospheric tides and data assimilation. J. Geophys. Res., 104 , 1692916941.

  • Toon, O. B., Turco R. P. , Jordan J. , Goodman J. , and Ferry G. , 1989: Physical processes in polar stratospheric ice clouds. J. Geophys. Res., 94 , 1135911380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsias, A., and Coauthors, 1999: Aircraft lidar observations of an enhanced type Ia polar stratospheric clouds during APE-POLECAT. J. Geophys. Res., 104 , 2396123969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuck, A. F., Watson R. T. , Condon E. P. , Margitan J. J. , and Toon O. B. , 1989: The planning and execution of ER-2 and DC-8 aircraft flights over Antarctica, August and September 1987. J. Geophys. Res., 94 , 1118111222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, C., and Coauthors, 2000: Non-equilibrium compositions of liquid polar stratospheric clouds in gravity waves. Geophys. Res. Lett., 27 , 38733876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vosper, S. B., 2003: Development and testing of a high resolution mountain-wave forecasting system. Meteor. Appl., 10 , 7586.

  • Vosper, S. B., and Worthington R. M. , 2002: VHF radar measurements and model simulations of mountain waves over Wales. Quart. J. Roy. Meteor. Soc., 128 , 185204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., Sisson J. M. , and Karoly D. J. , 1998: Predictive skill of an NWP system in the southern lower stratosphere. Quart. J. Roy. Meteor. Soc., 124 , 21812200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and Houze R. A. Jr., 1991: The Equatorial Mesoscale Experiment (EMEX): An overview. Bull. Amer. Meteor. Soc., 72 , 14811506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wirth, M., and Coauthors, 1999: Model guided Lagrangian observation and simulation of mountain polar stratospheric clouds. J. Geophys. Res., 104 , 2397123981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wofsy, S. C., Cohen R. C. , and Schmeltekopf A. L. , 1994: Overview: The Stratospheric Photochemistry Aerosols and Dynamics Expedition (SPADE) and Airborne Arctic Stratospheric Expedition II (AASE II). Geophys. Res. Lett., 21 , 25352538.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 208 56 2
PDF Downloads 117 35 1