• Atkins, N. T., , Wakimoto R. M. , , and Ziegler C. L. , 1998: Observations of the finescale structure of a dryline during VORTEX 95. Mon. Wea. Rev., 126 , 525550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balaji, V., , and Clark T. L. , 1988: Scale selection in locally forced convective fields and the initiation of deep cumulus. J. Atmos. Sci., 45 , 31883211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21 , 634639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., , Klimowski B. A. , , Zeitler J. W. , , Thompson R. L. , , and Weisman M. L. , 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15 , 6179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, H., , and Wakimoto R. M. , 2001: Retrieved pressure field and its influence on the propagation of a supercell thunderstorm. Mon. Wea. Rev., 129 , 26952713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, K. A., , Hjelmfelt M. R. , , Derickson R. G. , , Kristovich D. A. , , and Laird N. F. , 2000: Numerical simulations of transitions in boundary layer convective structures in a lake-effect snow event. Mon. Wea. Rev., 128 , 32833295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., , and Anthes R. A. , 1989: Storm and Cloud Dynamics. Academic Press, 883 pp.

  • Darkow, G. L., , and McCann D. W. , 1977: Relative environmental winds for 121 tornado bearing storms. Preprints, 10th Conf. on Severe Local Storms, Omaha, NE, Amer. Meteor. Soc., 413–417.

  • Davies-Jones, R. P., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41 , 29913006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., 1991: A review for forecasters on the application of hodographs to forecasting severe thunderstorms. Natl. Wea. Dig., 16 , 216.

    • Search Google Scholar
    • Export Citation
  • Giordano, L. A., , and Fritsch M. , 1991: Strong tornadoes and flash-flood producing rainstorms during the warm season in the mid-Atlantic region. Wea. Forecasting, 6 , 437455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glickman, T. S., 2000: Glossary of Meteorology. 2d ed. Amer. Meteor. Soc., 855 pp.

  • Hagemeyer, B. C., , and Schmocker G. K. , 1991: Characteristics of east-central Florida tornado environments. Wea. Forecasting, 6 , 499514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halverson, J. B., , Ferrier B. S. , , Rickenbach T. M. , , Simpson J. , , and Tao W-K. , 1999: An ensemble of convective systems on 11 February 1993 during TOGA COARE: Morphology, rainfall characteristics, and anvil cloud interactions. Mon. Wea. Rev., 127 , 12081228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hauf, T., 1993: Aircraft observations of convection waves over southern Germany—A case study. Mon. Wea. Rev., 121 , 32823290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier/Academic Press, 535 pp.

  • Houze, R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Johns, R. H., 1982: A synoptic climatology of northwest flow severe weather outbreaks. Part I: Nature and significance. Mon. Wea. Rev., 110 , 16531663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., 1984: A synoptic climatology of northwest-flow severe weather outbreaks. Part II: Meteorological parameters and synoptic patterns. Mon. Wea. Rev., 112 , 449464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, M. L., , Lin Y-L. , , Hamilton D. W. , , and Rozumalski R. A. , 1998: The numerical simulation of an unbalanced jetlet and its role in the Palm Sunday 1994 tornado outbreak in Alabama and Georgia. Mon. Wea. Rev., 126 , 21332165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., , and Mahrt L. , 1992: Momentum transport by gravity waves. J. Atmos. Sci., 49 , 735748.

  • Klemp, J. B., 1987: Dynamics of tornadic thunderstorms. Annu. Rev. Fluid Mech., 19 , 369402.

  • Klemp, J. B., , and Wilhelmson R. B. , 1978a: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35 , 10701096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., , and Wilhelmson R. B. , 1978b: Simulations of right- and left-moving storms produced through storm splitting. J. Atmos. Sci., 35 , 10971110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A., , Laird N. F. , , Hjelmfelt M. R. , , Derickson R. G. , , and Cooper K. A. , 1999: Transitions in boundary layer meso-γ convective structures: An observational case study. Mon. Wea. Rev., 127 , 28952909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1976: An evaluation of tornado proximity wind and stability data. Mon. Wea. Rev., 104 , 133142.

  • Markowski, P. M., , Hannon C. , , Frame J. , , Lancaster E. , , Pietrycha A. , , Edwards R. , , and Thompson R. , 2003: Characteristics of vertical wind profiles near supercells obtained from the Rapid Update Cycle. Wea. Forecasting, 18 , 12621272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, R. E., 1984: A triple-Doppler radar analysis of a discretely propagating multicell convective storm. J. Atmos. Sci., 41 , 29732990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., , and Blanchard D. O. , 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13 , 11481164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redelsperger, J., , and Clark T. L. , 1990: The initiation and horizontal scale selection of convection over gently sloping terrain. J. Atmos. Sci., 47 , 516541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rickenbach, T. M., 1999: Cloud-top evolution of tropical oceanic squall lines from radar reflectivity and infrared satellite data. Mon. Wea. Rev., 127 , 29512976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlesinger, R. E., 1975: A three-dimensional numerical model of an isolated deep convective cloud: Preliminary results. J. Atmos. Sci., 32 , 934957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlesinger, R. E., 1978: A three-dimensional numerical model of an isolated thunderstorm. Part I: Comparative experiments for variable ambient wind shear. J. Atmos. Sci., 35 , 690713.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shutts, G., 2003: Inertia–gravity wave and neutral Eady wave trains forced by directionally sheared flow over isolated hills. J. Atmos. Sci., 60 , 593606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., , Halvorson S. F. , , and Onton D. J. , 2000: Climatology of lake-effect snowstorms of the Great Salt Lake. Mon. Wea. Rev., 128 , 709727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toutenhoofd, V., , and Klemp J. B. , 1983: An isolated cumulonimbus observed in northeastern Colorado: Comparison of field observations with results of a three-dimensional simulation. Mon. Wea. Rev., 111 , 468478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., , Liu C. , , and Cai H. , 1998: The Garden City, Kansas, storm during VORTEX 95. Part I: Overview of the storm’s life cycle and mesocyclogenesis. Mon. Wea. Rev., 126 , 372392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., , Wilson J. W. , , Wakimoto R. M. , , and Crook N. A. , 1997: Horizontal convective rolls: Determining the environmental conditions supporting their existence and characteristics. Mon. Wea. Rev., 125 , 505526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , and Klemp J. B. , 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110 , 504520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , and Klemp J. B. , 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112 , 24792498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., , and Klemp J. B. , 1986: Characteristics of convective storms. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 331–358.

    • Search Google Scholar
    • Export Citation
  • Wilhelmson, R. B., , and Klemp J. B. , 1978: A numerical study of storm splitting that leads to long-lived storms. J. Atmos. Sci., 35 , 19741986.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 148 147 14
PDF Downloads 122 122 14

On the Classification of Vertical Wind Shear as Directional Shear versus Speed Shear

View More View Less
  • 1 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
© Get Permissions
Restricted access

Abstract

Vertical wind shear is commonly classified as “directional” or “speed” shear. In this note, these classifications are reviewed and their relevance discussed with respect to the dynamics of convective storms. In the absence of surface drag, storm morphology and evolution only depend on the shape and length of a hodograph, on which the storm-relative winds depend; that is, storm characteristics are independent of the translation and rotation of a hodograph. Therefore, traditional definitions of directional and speed shear are most relevant when applied to the storm-relative wind profile.

Corresponding author address: Dr. Paul Markowski, Dept. of Meteorology, The Pennsylvania State University, 503 Walker Bldg., University Park, PA 16802. Email: pmarkowski@psu.edu

Abstract

Vertical wind shear is commonly classified as “directional” or “speed” shear. In this note, these classifications are reviewed and their relevance discussed with respect to the dynamics of convective storms. In the absence of surface drag, storm morphology and evolution only depend on the shape and length of a hodograph, on which the storm-relative winds depend; that is, storm characteristics are independent of the translation and rotation of a hodograph. Therefore, traditional definitions of directional and speed shear are most relevant when applied to the storm-relative wind profile.

Corresponding author address: Dr. Paul Markowski, Dept. of Meteorology, The Pennsylvania State University, 503 Walker Bldg., University Park, PA 16802. Email: pmarkowski@psu.edu

Save