• Caracena, F., , and Fritsch J. M. , 1983: Focusing mechanisms in the Texas Hills County flash flood of 1978. Mon. Wea. Rev., 111 , 23192332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R., , Tuttle J. D. , , Ahijevych D. A. , , and Trier S. B. , 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59 , 20332056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Done, J., , Davis C. A. , , and Weisman M. , 2004: The next-generation of NWP: Explicit forecasts of convection using the Weather Research and Forecasting (WRF) model. Atmos. Sci. Lett., 5 , 110117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121 , 14931513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckel, F. A., , and Mass C. F. , 2005: Aspects of effective mesoscale, short-range ensemble forecasting. Wea. Forecasting, 20 , 328350.

  • Ehrendorfer, M., 1997: Predicting the uncertainty of numerical weather forecast: A review. Meteor. Z., 6 , 147183.

  • Errico, R. M., , Langland R. , , and Baumhefner D. P. , 2002: The workshop in atmospheric predictability. Bull. Amer. Meteor. Soc., 83 , 13411344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fowle, M. A., , and Roebber P. J. , 2003: Short-range (0–48 h) numerical prediction of convective occurrence, mode, and location. Wea. Forecasting, 18 , 782794.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., 2002: Impact of verification grid-box size on warm-season QPF skill measures. Wea. Forecasting, 17 , 12961302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., , and Segal M. , 2001: Impact of improved initialization of mesoscale features on convective system rainfall in 10-km Eta simulations. Wea. Forecasting, 16 , 680696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121 , 764787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimit, E. P., , and Mass C. F. , 2002: Initial results of a mesoscale short-range ensemble forecasting system over the Pacific Northwest. Wea. Forecasting, 17 , 192205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J. A., 2002: Accounting for model error in ensemble-based state estimation and forecasting. Mon. Wea. Rev., 130 , 23732391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., , and Pan H-L. , 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Islam, S., , Bras R. L. , , and Emanuel K. A. , 1993: Predictability of mesoscale rainfalls in the Tropics. J. Appl. Meteor., 32 , 297310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., , and Fristch J. M. , 1990: A one-dimensional entraining detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47 , 27842802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laprise, R., , Varma M. R. , , Denis B. , , Caya D. , , and Zawadzki I. , 2000: Predictability of a nested limited-area model. Mon. Wea. Rev., 128 , 41494154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: The predictability of hydrodynamic flow. Trans. New York Acad. Sci., 25B , 409432.

  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21 , 289307.

  • Lorenz, E. N., 1996: Predictability—A problem partly solved. Proc. Seminar on Predictability, Vol. I, Reading, United Kingdom, ECMWF, 1–19.

  • Mellor, G. L., , and Yamada T. , 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20 , 851875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen-Gammon, J. W., , Zhang F. , , Odins A. , , and Myoung B. , 2006: Extreme rainfall events in Texas: Patterns and predictability. Phys. Geogr., in press.

    • Search Google Scholar
    • Export Citation
  • Odins, A. M., 2004: Mesoscale predictability of an extreme warm season precipitation event. M.S. thesis, Dept. of Atmospheric Sciences, Texas A&M University, 108 pp.

  • Olson, D. A., , Junker N. W. , , and Korty B. , 1995: Evaluation of 33 years of quantitative precipitation forecasting at the NMC. Wea. Forecasting, 10 , 498511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reisner, J., , Rasmussen R. J. , , and Bruintjes R. T. , 1998: Explicit forecasting of supercooled liquid water in winter storms using MM5 Mesoscale Model. Quart. J. Roy. Meteor. Soc., 124B , 10711107.

    • Search Google Scholar
    • Export Citation
  • Reynolds, C., , Webster P. J. , , and Kalnay E. , 1994: Random error growth in NMC’s global forecast. Mon. Wea. Rev., 122 , 12811305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, C., , and Zhang F. , 2003: Assimilation of simulated radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131 , 16631677.

  • Stensrud, D. J., , Brooks H. E. , , Du J. , , Tracton M. S. , , and Rogers E. , 1999: Using ensembles for short-range forecasting. Mon. Wea. Rev., 127 , 433446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, Z., , Zhang F. , , Rotunno R. , , and Snyder C. , 2004: Mesoscale predictability of moist baroclinic waves: Experiments with parameterized convection. J. Atmos. Sci., 61 , 17941804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W-K., , and Simpson J. , 1993: Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4 , 2572.

  • Thompson, P. D., 1957: Uncertainty of initial state as a factor in the predictability of large scale atmospheric flow patterns. Tellus, 9 , 275295.

    • Search Google Scholar
    • Export Citation
  • Tracton, M. S., , and Kalnay E. , 1993: Operational ensemble prediction at the National Meteorological Center: Practical aspects. Wea. Forecasting, 8 , 379400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., , and Seaman N. L. , 1997: A comparison study of convective parameterization schemes in a mesoscale model. Mon. Wea. Rev., 125 , 252278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, T. T., , and Hsu H. M. , 2000: Nested-model simulation of moist convection: The impact of coarse-grid parameterized convection on fine-grid resolved convection. Mon. Wea. Rev., 128 , 22112231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, T. T., , Peterson R. A. , , and Treadon R. E. , 1997: A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc., 78 , 25992617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., 2005: Dynamics and structure of mesoscale error covariance of a winter cyclone estimated through short-range ensemble forecasts. Mon. Wea. Rev., 133 , 28762893.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., , Snyder C. , , and Rotunno R. , 2002: Mesoscale predictability of the “surprise” snowstorm of 24–25 January 2000. Mon. Wea. Rev., 130 , 16171632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., , Snyder C. , , and Rotunno R. , 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60 , 11731185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zupanski, M., , Zupanski D. , , Parrish D. F. , , Rogers E. , , and DiMego G. , 2002: Four-dimensional variational data assimilation for the blizzard of 2000. Mon. Wea. Rev., 130 , 19671988.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 63 63 7
PDF Downloads 56 56 3

Mesoscale Predictability of an Extreme Warm-Season Precipitation Event

View More View Less
  • 1 Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
© Get Permissions
Restricted access

Abstract

A mesoscale model is used to investigate the mesoscale predictability of an extreme precipitation event over central Texas on 29 June 2002 that lasted through 7 July 2002. Both the intrinsic and practical aspects of warm-season predictability, especially quantitative precipitation forecasts up to 36 h, were explored through experiments with various grid resolutions, initial and boundary conditions, physics parameterization schemes, and the addition of small-scale, small-amplitude random initial errors. It is found that the high-resolution convective-resolving simulations (with grid spacing down to 3.3 km) do not produce the best simulation or forecast. It was also found that both the realistic initial condition uncertainty and model errors can result in large forecast errors for this warm-season flooding event. Thus, practically, there is room to gain higher forecast accuracy through improving the initial analysis with better data assimilation techniques or enhanced observations, and through improving the forecast model with better-resolved or -parameterized physical processes. However, even if a perfect forecast model is used, small-scale, small-amplitude initial errors, such as those in the form of undetectable random noise, can grow rapidly and subsequently contaminate the short-term deterministic mesoscale forecast within 36 h. This rapid error growth is caused by moist convection. The limited deterministic predictability of such a heavy precipitation event, both practically and intrinsically, illustrates the need for probabilistic forecasts at the mesoscales.

Corresponding author address: Dr. Fuqing Zhang, Dept. of Atmospheric Sciences, Texas A&M University, 3150 TAMU, College Station, TX 77843-3150. Email: fzhang@tamu.edu

Abstract

A mesoscale model is used to investigate the mesoscale predictability of an extreme precipitation event over central Texas on 29 June 2002 that lasted through 7 July 2002. Both the intrinsic and practical aspects of warm-season predictability, especially quantitative precipitation forecasts up to 36 h, were explored through experiments with various grid resolutions, initial and boundary conditions, physics parameterization schemes, and the addition of small-scale, small-amplitude random initial errors. It is found that the high-resolution convective-resolving simulations (with grid spacing down to 3.3 km) do not produce the best simulation or forecast. It was also found that both the realistic initial condition uncertainty and model errors can result in large forecast errors for this warm-season flooding event. Thus, practically, there is room to gain higher forecast accuracy through improving the initial analysis with better data assimilation techniques or enhanced observations, and through improving the forecast model with better-resolved or -parameterized physical processes. However, even if a perfect forecast model is used, small-scale, small-amplitude initial errors, such as those in the form of undetectable random noise, can grow rapidly and subsequently contaminate the short-term deterministic mesoscale forecast within 36 h. This rapid error growth is caused by moist convection. The limited deterministic predictability of such a heavy precipitation event, both practically and intrinsically, illustrates the need for probabilistic forecasts at the mesoscales.

Corresponding author address: Dr. Fuqing Zhang, Dept. of Atmospheric Sciences, Texas A&M University, 3150 TAMU, College Station, TX 77843-3150. Email: fzhang@tamu.edu

Save