• Benjamin, S. G., and Coauthors, 2002: RUC20—The 20-km version of the Rapid Update Cycle. NWS Tech. Procedure Bull. 490, 29 pp.

  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132 , 495518.

  • Bluestein, H. B., 1985: The formation of a “landspout” in a “broken-line” squall line in Oklahoma. Preprints, 14th Conf. on Severe Local Storms, Indianapolis, IN, Amer. Meteor. Soc., 267–270.

  • Bothwell, P. D., , Hart J. A. , , and Thompson R. L. , 2002: An integrated three-dimensional objective analysis scheme in use at the Storm Prediction Center. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., J117–J120.

  • Brady, R. H., , and Szoke E. J. , 1989: A case study of nonmesocyclone tornado development in northeast Colorado: Similarities to waterspout formation. Mon. Wea. Rev., 117 , 843856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., , Donaldson R. J. Jr., , and Desrochers P. R. , 1993: Tornado detection and warning by radar. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 203–221.

    • Crossref
    • Export Citation
  • Caruso, J. M., , and Davies J. M. , 2005: Tornadoes in nonmesocyclone environments with pre-existing vertical vorticity along convergence boundaries. Natl. Wea. Assoc. Electron. J. Operational Meteor., 2005-EJ4 [Available online at http://www.nwas.org/ej/.].

    • Search Google Scholar
    • Export Citation
  • Colby, F. P., 1984: Convective inhibition as a predictor of convection during AVE-SESAME-2. Mon. Wea. Rev., 112 , 22392252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craven, J. P., , and Brooks H. E. , 2004: Baseline climatology of sounding-derived parameters associated with deep moist convection. Natl. Wea. Dig., 28 , 1324.

    • Search Google Scholar
    • Export Citation
  • Davies, J. M., 1993: Hourly helicity, instability, and EHI in forecasting supercell tornadoes. Preprints, 17th Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 107–111.

  • Davies, J. M., 2004: Estimations of CIN and LFC associated with tornadic and nontornadic supercells. Wea. Forecasting, 19 , 714726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, J. M., , and Johns R. H. , 1993: Some wind and instability parameters associated with strong and violent tornadoes. 1. Wind shear and helicity. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 573–582.

    • Crossref
    • Export Citation
  • Davies-Jones, R. P., , Burgess D. , , and Foster M. , 1990: Test of helicity as a tornado forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 588–592.

  • Doswell C. A. III, , , and Rasmussen E. N. , 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9 , 625629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, J. A., , and Korotky W. , 1991: The SHARP workstation v1.50 user’s guide. NOAA/National Weather Service, 30 pp. [Available from NWS Eastern Region Headquarters, 630 Johnson Ave., Bohemia, NY 11716.].

  • Johns, R. H., , Davies J. M. , , and Leftwich P. W. , 1993: Some wind and instability parameters associated with strong and violent tornadoes. 2. Variations in the combinations of wind and instability parameters. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 583–590.

    • Crossref
    • Export Citation
  • Lee, B. D., , and Wilhelmson R. B. , 1997: The numerical simulation of nonsupercell tornadogenesis. Part II: Evolution of a family of tornadoes along a weak outflow boundary. J. Atmos. Sci., 54 , 23872415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, B. D., , and Wilhelmson R. B. , 2000: The numerical simulation of nonsupercell tornadogenesis. Part III: Parameter tests investigating the role of CAPE, vortex sheet strength, and boundary layer vertical shear. J. Atmos. Sci., 57 , 22462261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., , Straka J. M. , , and Rasmussen E. N. , 2002: Direct surface thermodynamic observations within rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130 , 16921721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrief, M., , and Miller M. J. , 1976: The dynamics and simulation of tropical cumulonimbus and squall lines. Quart. J. Roy. Meteor. Soc., 102 , 373394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pietrycha, A. E., , and Manross K. L. , 2003: WSR-88D analysis of vortices embedded within a surface low pressure trough and subsequent convection initiation. Preprints, 31st Int. Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 835–838.

  • Pietrycha, A. E., , and Rasmussen E. N. , 2004: Finescale surface observations of the dryline: A mobile mesonet perspective. Wea. Forecasting, 19 , 10751088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., 2003: Refined supercell and tornado forecast parameters. Wea. Forecasting, 18 , 530535.

  • Rasmussen, E. N., , and Blanchard D. O. , 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13 , 11481164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., , Edwards R. , , Hart J. A. , , Elmore K. L. , , and Markowski P. , 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18 , 12431261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., , and Wilson J. W. , 1989: Non-supercell tornadoes. Mon. Wea. Rev., 117 , 11131140.

  • Wakimoto, R. M., , and Atkins N. T. , 1996: Observations on the origin of rotation: The Newcastle tornado during VORTEX 94. Mon. Wea. Rev., 124 , 384407.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 315 315 18
PDF Downloads 263 263 13

Tornadoes in Environments with Small Helicity and/or High LCL Heights

View More View Less
  • 1 Wichita, Kansas
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Recent studies have suggested that supercell tornado environments are usually associated with large 0–1-km storm-relative helicity (SRH) and relatively low lifting condensation levels (LCL heights). However, occasional tornadoes of significance occur in environments having characteristics that appear less supportive of supercell tornadoes, including small SRH values and/or relatively high LCL heights. Such tornadoes, whether associated with supercell or nonsupercell processes (more precisely termed mesocyclone and nonmesocyclone processes), present a challenge for forecasters. This empirical study uses a database of soundings derived from the Rapid Update Cycle model to examine thermodynamic characteristics of F1 and greater intensity tornado events associated with small SRH and/or high LCL heights. Results strongly suggest that many such tornado events are associated with steep lapse rates in the lowest few kilometers above ground. The low level of free convection heights, small convective inhibition, and sizable convective available potential energy below 3 km were also found to be of possible importance. These thermodynamic characteristics combined would likely reduce resistance to upward accelerations, potentially enhancing ascent for low-level parcels entering thunderstorm updrafts and, hence, low-level stretching. From prior research, if preexisting boundaries were available to provide surface vertical vorticity for stretching, such thermodynamic characteristics could be an important component of tornado events that involve nonmesocyclone processes. These same thermodynamic characteristics may also offer clues for the investigation of mesocyclone tornado events that do not fit well with accepted tornado forecasting parameters from prior studies.

Corresponding author address: Jonathan M. Davies, 3206 N. Westwind Bay, Wichita, KS 67205-2528. Email: jdavies1@cox.net

Abstract

Recent studies have suggested that supercell tornado environments are usually associated with large 0–1-km storm-relative helicity (SRH) and relatively low lifting condensation levels (LCL heights). However, occasional tornadoes of significance occur in environments having characteristics that appear less supportive of supercell tornadoes, including small SRH values and/or relatively high LCL heights. Such tornadoes, whether associated with supercell or nonsupercell processes (more precisely termed mesocyclone and nonmesocyclone processes), present a challenge for forecasters. This empirical study uses a database of soundings derived from the Rapid Update Cycle model to examine thermodynamic characteristics of F1 and greater intensity tornado events associated with small SRH and/or high LCL heights. Results strongly suggest that many such tornado events are associated with steep lapse rates in the lowest few kilometers above ground. The low level of free convection heights, small convective inhibition, and sizable convective available potential energy below 3 km were also found to be of possible importance. These thermodynamic characteristics combined would likely reduce resistance to upward accelerations, potentially enhancing ascent for low-level parcels entering thunderstorm updrafts and, hence, low-level stretching. From prior research, if preexisting boundaries were available to provide surface vertical vorticity for stretching, such thermodynamic characteristics could be an important component of tornado events that involve nonmesocyclone processes. These same thermodynamic characteristics may also offer clues for the investigation of mesocyclone tornado events that do not fit well with accepted tornado forecasting parameters from prior studies.

Corresponding author address: Jonathan M. Davies, 3206 N. Westwind Bay, Wichita, KS 67205-2528. Email: jdavies1@cox.net

Save