• Atlas, D., 1954: The estimation of cloud parameters by radar. J. Meteor., 11 , 309317.

  • Atlas, D., 1990: Radar in Meteorology. Amer. Meteor. Soc., 806 pp.

  • Brown, E., , and Braham R. , 1963: Precipitation particle measurements in cumulus congestus. J. Atmos. Sci., 20 , 2328.

  • Crook, N. A., , and Sun J. , 2002: Assimilating radar, surface, and profiler data for the Sydney 2000 Forecast Demonstration Project. J. Atmos. Oceanic Technol., 19 , 888898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., , and Sun J. , 2004: Analysis and forecasting of the low-level wind during the Sydney 2000 Forecast Demonstration Project. Wea. Forecasting, 19 , 151167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, T., and Coauthors, 2003: Progress in implementing near real time collection, distribution, and archive of WSR-88D level II data. Preprints, 31st Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 945–947.

  • Douglas, R., 1964: Hail size distribution. Preprints, 11th Conf. on Radar Meteorology, Boulder, CO, Amer. Meteor. Soc., 146–149.

  • Gal-Chen, T., 1978: A method for initializing the anelastic equations: Implications for matching models with observations. Mon. Wea. Rev., 106 , 587606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., , Xue M. , , Shapiro A. , , and Droegemeier K. K. , 1999: A variational analysis for the retrieval of three-dimensional mesoscale wind fields from two Doppler radars. Mon. Wea. Rev., 127 , 21282142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, J., , Wang L. , , and Xu Q. , 2003: A three-step dealiasing method for Doppler velocity data quality control. J. Atmos. Oceanic Technol., 20 , 17381748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, W., , Gu H. , , and Xu Q. , 2001: Impact of single-Doppler radar observations on numerical prediction of 7 May 1995 Oklahoma squall line. Preprints, Fifth Symp. on Integrated Observing Systems, Albuquerque, NM, Amer. Meteor. Soc., 139–142.

  • Hane, C. E., , and Scott B. C. , 1978: Temperature and pressure perturbations within convective clouds derived from detailed air motion information: Preliminary testing. Mon. Wea. Rev., 106 , 654661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125 , 14141430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteor. Monogr., No. 32, Amer. Meteor. Soc., 84 pp.

    • Crossref
    • Export Citation
  • Purser, R. J., , Wu W-S. , , Parrish D. F. , , and Roberts N. M. , 2003: Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous and isotropic Gaussian covariances. Mon. Wea. Rev., 131 , 15241535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, C. J., , and Xu Q. , 1996: A simple adjoint method of wind analysis for single-Doppler data. Mon. Wea. Rev., 124 , 11321144.

  • Serafin, R. J., , and Wilson J. W. , 2000: Operational weather radar in the United States: Progress and opportunity. Bull. Amer. Meteor. Soc., 81 , 501518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., , Ellis S. , , and Shaw J. , 1995: Single-Doppler velocity retrieval with Phoenix II data: Clear air and microburst wind retrievals in the planetary boundary layer. J. Atmos. Sci., 52 , 12651287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., , Robinson P. , , Wurman J. , , and Gao J. , 2003: Single-Doppler velocity retrieval with rapid-scan radar data. J. Atmos. Oceanic Technol., 20 , 17581775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, C., , and Zhang F. , 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131 , 16631677.

  • Sun, J., 2004: Numerical prediction of thunderstorms: Fourteen years later. Atmospheric Turbulence and Mesoscale Meteorology, E. Fedorovich, R. Rotunno, and B. Stevens, Eds., Cambridge University Press, 139–164.

    • Crossref
    • Export Citation
  • Sun, J., 2005: Initialization and numerical forecasting of a supercell storm observed during STEPS. Mon. Wea. Rev., 133 , 793813.

  • Sun, J., , and Crook N. A. , 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54 , 16421661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., , and Crook N. A. , 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55 , 836852.

    • Search Google Scholar
    • Export Citation
  • Weygandt, S. S., , Shapiro A. , , and Droegemeier K. K. , 2002a: Retrieval of initial forecast fields from single-Doppler observations of a supercell thunderstorm. Part I: Single-Doppler velocity retrieval. Mon. Wea. Rev., 130 , 433453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weygandt, S. S., , Shapiro A. , , and Droegemeier K. K. , 2002b: Retrieval of initial forecast fields from single-Doppler observations of a supercell thunderstorm. Part II: Thermodynamic retrieval and model prediction. Mon. Wea. Rev., 130 , 454476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., , Verlinde J. , , and Sun J. , 2000: Dynamical and microphysical retrievals from Doppler radar observations of a deep convective cloud. J. Atmos. Sci., 57 , 262283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Q., , Kuo Y-H. , , Sun J. , , Lee W-C. , , Lim E. , , Guo Y. , , and Barker D. M. , 2005: Assimilation of Doppler radar observations with a regional 3DVAR system: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteor., 44 , 768788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., , and Wei L. , 2001: Estimation of three-dimensional error covariances. Part II: Analysis of wind innovation vectors. Mon. Wea. Rev., 129 , 29392954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., , Qiu C. J. , , and Yu J. X. , 1995: Simple adjoint retrievals of microburst winds from single-Doppler radar data. Mon. Wea. Rev., 123 , 18221833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., , Gu H. , , and Qiu C. J. , 2001a: Simple adjoint retrievals of wet-microburst winds and gust-front winds from single-Doppler radar data. J. Appl. Meteor., 40 , 14851499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., , Gu H. , , and Yang S. , 2001b: Simple adjoint method for three-dimensional wind retrievals from single-Doppler radar. Quart. J. Roy. Meteor. Soc., 127 , 10531067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Q., , Gu H. , , and Gu W. , 2001c: A variational method for Doppler radar data assimilation. Preprints, Fifth Symp. on Integrated Observing Systems, Albuquerque, NM, Amer. Meteor. Soc., 118–121.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 36 36 1
PDF Downloads 27 27 1

Using Radar Wind Observations to Improve Mesoscale Numerical Weather Prediction

View More View Less
  • 1 Marine Meteorology Division, Naval Research Laboratory, Monterey, California
  • | 2 National Severe Storms Laboratory, Norman, Oklahoma
  • | 3 University Corporation for Atmospheric Research, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A high-resolution radar data assimilation system is presented for high-resolution numerical weather prediction models. The system is under development at the Naval Research Laboratory for the Navy’s Coupled Ocean–Atmosphere Mesoscale Prediction System. A variational approach is used to retrieve three-dimensional dynamical fields of atmospheric conditions from multiple-Doppler radar observations of radial velocity within a limited area. The methodology is described along with a preliminary evaluation of the impact of assimilated radar data on model forecasts using a case study of a squall line that occurred along the east coast of the United States on 9 May 2003. Results from the experiments show a significant impact from the assimilated radar radial velocity data on the model forecast of not just dynamical but also hydrological fields at all model levels for the duration of the storm. A verification system has also been developed to assess the radar data assimilation impact, and the results show improvements in the three-dimensional wind forecasts but relatively small changes in the prediction of storm locations. This study highlights the need to develop a continuous radar data assimilation system to maximize the impact of the data.

Corresponding author address: Dr. Qingyun Zhao, Naval Research Laboratory, Mail Stop II, 7 Grace Hopper Ave., Monterey, CA 93943. Email: zhao@nrlmry.navy.mil

Abstract

A high-resolution radar data assimilation system is presented for high-resolution numerical weather prediction models. The system is under development at the Naval Research Laboratory for the Navy’s Coupled Ocean–Atmosphere Mesoscale Prediction System. A variational approach is used to retrieve three-dimensional dynamical fields of atmospheric conditions from multiple-Doppler radar observations of radial velocity within a limited area. The methodology is described along with a preliminary evaluation of the impact of assimilated radar data on model forecasts using a case study of a squall line that occurred along the east coast of the United States on 9 May 2003. Results from the experiments show a significant impact from the assimilated radar radial velocity data on the model forecast of not just dynamical but also hydrological fields at all model levels for the duration of the storm. A verification system has also been developed to assess the radar data assimilation impact, and the results show improvements in the three-dimensional wind forecasts but relatively small changes in the prediction of storm locations. This study highlights the need to develop a continuous radar data assimilation system to maximize the impact of the data.

Corresponding author address: Dr. Qingyun Zhao, Naval Research Laboratory, Mail Stop II, 7 Grace Hopper Ave., Monterey, CA 93943. Email: zhao@nrlmry.navy.mil

Save