• Allen, R. C., Durkee P. A. , and Wash C. H. , 1990: Snow/cloud discrimination with multispectral satellite measurements. J. Appl. Meteor., 29 , 9941004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S., 1997: Improvements in aviation forecasts from the 40-km RUC. Preprints, Seventh Conf. on Aviation, Range, and Aerospace Meteorology, Phoenix, AZ, Amer. Meteor. Soc., 411–416.

  • Bernstein, B., McDonough F. , Politovich M. , Brown B. , Ratvasky T. , Miller D. , Wolff C. , and Cunning G. , 2005: Current icing potential (CIP): Algorithm description and comparison with aircraft observations. J. Appl. Meteor., 44 , 969986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J. A., and Liu G. , 1992: Assessment of aircraft icing potential using satellite data. J. Appl. Meteor., 31 , 605621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell C. A. III, , Davies-Jones R. , and Keller D. L. , 1990: On summary measures of skill in rare event forecasting based on contingency tables. Wea. Forecasting, 5 , 576585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., 1995: Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery. Wea. Forecasting, 10 , 606619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., 1996: The use of GOES-8 multi-spectral imagery for the detection of aircraft icing regions. Preprints, Eighth Conf. on Satellite Meteorology and Oceanography, Atlanta, GA, Amer. Meteor. Soc., 168–171.

  • Ellrod, G. P., Achutuni R. V. , Daniels J. M. , Prins E. M. , and Nelson J. P. III, 1998: An assessment of GOES-8 imager data quality. Bull. Amer. Meteor. Soc., 79 , 25092526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyre, J. R., Brownscombe J. L. , and Allam R. J. , 1984: Detection of fog at night using Advanced Very High Resolution Radiometer (AVHRR) imagery. Meteor. Mag., 113 , 266271.

    • Search Google Scholar
    • Export Citation
  • Fowler, T., Chapman M. , Brown B. , and Mahoney J. , 2004: Current icing potential (CIP) severity index. Preprints, 11th Conf. on Aviation, Range, and Aerospace Meteorology, Hyannis, MA, Amer. Meteor. Soc., CD-ROM, 9.3.

  • Hansman, R. J., 1989: The influence of ice accretion physics on the forecasting of aircraft icing conditions. Preprints, Third Int. Conf. on the Aviation Weather System, Anaheim, CA, Amer. Meteor. Soc., 154–158.

  • Hawkinson, J. A., Feltz W. A. , and Ackerman S. A. , 2005: A comparison of GOES sounder and cloud lidar and radar-retrieved cloud-top heights. J. Appl. Meteor., 44 , 12341242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, T., 1987: A cloud classification with NOAA-7 split window measurements. J. Geophys. Res., 92 , 39914000.

  • Kleespies, T., 1995: The retrieval of marine stratiform cloud properties from multiple observations of varying solar illumination. J. Appl. Meteor., 34 , 15121524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T. F., Turk F. J. , and Richardson K. , 1997: Stratus and fog products using GOES-8–9 3.9 μm data. Wea. Forecasting, 12 , 664677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, J., Henderson J. , Brown B. , Hart J. , Loughe A. , Fischer C. , and Sigren B. , 2002: The Real-Time Verification System (RTVS) and its application to aviation weather forecasts. Preprints, 10th Conf. on Aviation, Range, and Aerospace Meteorology, Portland, OR, Amer. Meteor. Soc., 323–326.

  • Mason, S. J., and Graham N. E. , 1999: Conditional probabilities, relative operating characteristics, and relative operating levels. Wea. Forecasting, 14 , 713725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonough, F., and Bernstein B. C. , 1999: Combining satellite, radar, and surface observations with model data to create a better aircraft icing diagnosis. Preprints, Eighth Conf. on Aviation, Range, and Aerospace Meteorology, Dallas, TX, Amer. Meteor. Soc., 467–471.

  • Menzel, W. P., and Purdom J. F. W. , 1994: Introducing the GOES-I: The first of a new generation of Geostationary Operational Environmental Satellites. Bull. Amer. Meteor. Soc., 75 , 757781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., Smith W. L. , and Stewart T. R. , 1983: Improved cloud motion wind vector and altitude assignment using VAS. J. Climate Appl. Meteor., 22 , 377384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., Holt F. , Schmit T. , Aune R. , Schreiner A. , Wade G. , and Gray D. , 1998: Application of GOES-8/9 soundings to weather forecasting and nowcasting. Bull. Amer. Meteor. Soc., 79 , 20592077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petty, K. R., and Floyd C. D. J. , 2004: A statistical review of aviation airframe icing accidents in the U.S. Preprints, 11th Conf. on Aviation, Range, and Aerospace Meteor., Hyannis, MA, Amer. Meteor. Soc., CD-ROM, 11.2.

  • Politovich, M., 1996: Response of research aircraft to icing and evaluation of a severity index. J. Aircraft, 28 , 291297.

  • Rauber, R., and Tokay A. , 1991: An explanation for the existence of supercooled water at the top of cold clouds. J. Atmos. Sci., 48 , 10051023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sand, W. R., Cooper W. A. , Politovitch M. K. , and Veal D. L. , 1984: Icing conditions encountered by a research aircraft. J. Climate Appl. Meteor., 23 , 14271440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, R. W., and D’Aria D. M. , 1994: Emissivity of terrestrial materials in the 3–5 μm atmospheric window. Remote Sens. Environ., 47 , 346361.

    • Search Google Scholar
    • Export Citation
  • Schmidt, E. O., Arduini R. F. , Wielicki B. A. , Stone R. S. , and Tsay S-C. , 1995: Considerations for modeling thin cirrus effects via brightness temperature differences. J. Appl. Meteor., 34 , 447459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., Gunshor M. M. , Menzel W. P. , Gurka J. J. , Li J. , and Bachmeier A. S. , 2005: Introducing the next-generation Advanced Baseline imager on GOES-R. Bull. Amer. Meteor. Soc., 86 , 10791096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreiner, A. J., and Schmit T. J. , 2001: Derived cloud products from the GOES-M imager. Preprints, 11th Conf. on Satellite Meteorology and Oceanography, Madison, WI, Amer. Meteor. Soc., 420–423.

  • Schreiner, A. J., Schmit T. J. , and Aune R. M. , 2002: Maritime inversions and the GOES sounder cloud product. Natl. Wea. Dig., 26 , 1. 2738.

    • Search Google Scholar
    • Export Citation
  • Schultz, P., and Politovich M. K. , 1992: Toward the improvement of aircraft-icing forecasts for the continental United States. Wea. Forecasting, 7 , 491500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith W. L. Jr, , Minnis P. , and Young D. F. , 2000: An icing product derived from operational satellite data. Preprints, Ninth Conf. on Aviation, Range and Aerospace Meteorology, Orlando, FL, Amer. Meteor. Soc., 256–259.

  • Space Systems Loral, 1996: GOES I-M databook. DRL 101-08, Ref. S-415-19, 200 pp.

  • Stowe, L. L., Davis P. A. , and McClain E. P. , 1999: Scientific basis and initial evaluation of the CLAVR-1 global clear/cloud classification algorithm for the Advanced Very High Resolution Radiometer. J. Atmos. Oceanic Technol., 16 , 656681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, S., Feltz W. , Schreiner A. , and Holz R. , 2004: Satellite derived CONUS cloud top pressure product validation using aircraft based cloud phase lidar data from the AtREC field campaign. Preprints, 11th Conf. on Aviation, Range, and Aerospace Meteorology, Hyannis, MA, Amer. Meteor. Soc., CD-ROM, P8.7.

  • Thompson, G., Bullock R. , and Lee T. F. , 1997: Using satellite data to reduce spatial extent of diagnosed icing. Wea. Forecasting, 12 , 185190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 1954: Meteorological aspects of aircraft icing. WMO Tech. Note 3, WMO-30-TP9, Geneva, Switzerland, 18 pp.

  • Vivekanandan, J., Thompson G. , and Lee T. F. , 1996: Aircraft icing detection using satellite data and weather forecast model results. Proc. Int. Conf. on Aircraft Icing, Vol. II, Springfield, VA, Federal Aviation Administration, 365–373.

  • Wylie, D. P., Menzel W. P. , Woolf H. M. , and Strabala K. I. , 1994: Four years of global cirrus cloud statistics using HIRS. J. Climate, 7 , 19721986.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 328 178 0
PDF Downloads 275 145 0

Assessment of Aircraft Icing Potential and Maximum Icing Altitude from Geostationary Meteorological Satellite Data

View More View Less
  • 1 NOAA/NESDIS/Center for Satellite Applications and Research, Camp Springs, Maryland
  • | 2 Raytheon Information Solutions, Camp Springs, Maryland
Restricted access

Abstract

A satellite product that displays regions of aircraft icing potential, along with corresponding cloud-top heights, has been developed using data from the Geostationary Operational Environmental Satellite (GOES) imager and sounder. The icing product, referred to as the Icing Enhanced Cloud-top Altitude Product (ICECAP), is created hourly for the continental United States and southern Canada, and is color coded to show cloud-top altitudes in 1.9-km (6000 ft) intervals. Experimental ICECAP images became routinely available on the Internet during the spring of 2004. Verification of separate ICECAP components (imager icing potential and sounder cloud-top heights) using aircraft pilot reports (PIREPs) indicates that the product provides useful guidance on the spatial coverage and maximum altitude of current icing conditions, but not icing intensity, stratification, or minimum altitude. The imager icing potential component of ICECAP was compared with the operational 40-km resolution National Weather Service (NWS) current icing potential and NWS Airman’s Meteorological Advisories via the NOAA Real-Time Verification System, while GOES cloud-top heights were compared with altitudes of moderate or greater icing from PIREPs. Benefits and deficiencies of the GOES icing product are discussed.

* Retired

Corresponding author address: Gary Ellrod, P.O. Box 240, Granby, CT 06035. Email: gary.ellrod@gmail.com

Abstract

A satellite product that displays regions of aircraft icing potential, along with corresponding cloud-top heights, has been developed using data from the Geostationary Operational Environmental Satellite (GOES) imager and sounder. The icing product, referred to as the Icing Enhanced Cloud-top Altitude Product (ICECAP), is created hourly for the continental United States and southern Canada, and is color coded to show cloud-top altitudes in 1.9-km (6000 ft) intervals. Experimental ICECAP images became routinely available on the Internet during the spring of 2004. Verification of separate ICECAP components (imager icing potential and sounder cloud-top heights) using aircraft pilot reports (PIREPs) indicates that the product provides useful guidance on the spatial coverage and maximum altitude of current icing conditions, but not icing intensity, stratification, or minimum altitude. The imager icing potential component of ICECAP was compared with the operational 40-km resolution National Weather Service (NWS) current icing potential and NWS Airman’s Meteorological Advisories via the NOAA Real-Time Verification System, while GOES cloud-top heights were compared with altitudes of moderate or greater icing from PIREPs. Benefits and deficiencies of the GOES icing product are discussed.

* Retired

Corresponding author address: Gary Ellrod, P.O. Box 240, Granby, CT 06035. Email: gary.ellrod@gmail.com

Save